The micro-explosion strength of emulsified heavy oil droplets in catalytic cracking process

Author(s):  
Yuqiang Yan ◽  
Limei Chen ◽  
Jinshan Xu ◽  
Mannian Ren ◽  
Jianwen Da ◽  
...  
Author(s):  
Rokhsana M. Ismail ◽  
Nadrah M. Husami ◽  
Sahar Alrifaei

The study presents the results of the catalytic cracking process of heavy oil of the Alif – Marib field in Yemen. The best conditions of the process, pressure, temperature, and using zeolite HZSM-5 as catalyst were selected. Based on the characteristics of the heavy oil, the analyses were done using a gas chromatography technique and catalytic cracking unit designed in the laboratory of Chemical Engineering and Petrochemical faculty at Al-Baath University- Syria., refining process was done in Refining Company- Homs. The results of simple distillation of the cracking products at different range of temperature were (Gasoline= 19.5%; Kerosene=15%; Light gas oil= 36%; Distillate residue= 29.5%) and gases (CH4= 67.55 %; C2H4= 14.66 %; C2H6= 7.48 %; H3H8= 9.24%; C4H10=1.06 %). Extraction by sulfuric acid was done. An 84.044% oil-free aromatic has been gotten. In order to remove total paraffins from the oily cut that has a high pour point, different solvents were used. The properties of the oily cut from which the paraffin wax was removed gave encouraging results.


2018 ◽  
Vol 69 (10) ◽  
pp. 2633-2637
Author(s):  
Raluca Dragomir ◽  
Paul Rosca ◽  
Cristina Popa

The main objectives of the present paper are to adaptation the five-kinetic model of the catalytic cracking process and simulation the riser to predicts the FCC products yields when one of the major input variable of the process is change. The simulation and adaptation are based on the industrial data from Romanian refinery. The adaptation is realize using a computational method from Optimization Toolbox from Matlab programming language. The new model can be used for optimization and control of FCC riser.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120364
Author(s):  
Peipei Miao ◽  
Xiaolin Zhu ◽  
Yangling Guo ◽  
Jie Miao ◽  
Mengyun Yu ◽  
...  

Fuel ◽  
2019 ◽  
Vol 237 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanjun Che ◽  
Meng Yuan ◽  
Yingyun Qiao ◽  
Qin Liu ◽  
Jinhong Zhang ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3008
Author(s):  
Yaoshuang Cheng ◽  
Shiling Yuan

Heavy oil in crude oil flooding is extremely difficult to extract due to its high viscosity and poor fluidity. In this paper, molecular dynamics simulation was used to study the emulsification behavior of sodium dodecyl sulfonate (SDSn) micelles on heavy oil droplets composed of asphaltenes (ASP) at the molecular level. Some analyzed techniques were used including root mean square displacement, hydrophile-hydrophobic area of an oil droplet, potential of mean force, and the number of hydrogen bonds between oil droplet and water phase. The simulated results showed that the asphaltene with carboxylate groups significantly enhances the hydration layer on the surface of oil droplets, and SDSn molecules can change the strength of the hydration layer around the surface of the oil droplets. The water bridge structure between both polar heads of the surfactant was commonly formed around the hydration layer of the emulsified oil droplet. During the emulsification of heavy oil, the ratio of hydrophilic hydrophobic surface area around an oil droplet is essential. Molecular dynamics method can be considered as a helpful tool for experimental techniques at the molecular level.


2019 ◽  
Vol 7 ◽  
Author(s):  
Joana Pinto ◽  
Igor Pedrosa ◽  
Camila Linhares ◽  
Rosane A. S. San Gil ◽  
Yiu Lau Lam ◽  
...  

1994 ◽  
Vol 8 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Ahmad Rahman Songip ◽  
Takao Masuda ◽  
Hiroshi Kuwahara ◽  
Kenji Hashimoto

Sign in / Sign up

Export Citation Format

Share Document