hydration layer
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Taekyung Kim ◽  
Sunmok Kwon ◽  
Jeehyeon Lee ◽  
Joon Sang Lee ◽  
Shinill Kang

AbstractMetallic surface finishes have been used in the anti-biofouling, but it is very difficult to produce surfaces with hierarchically ordered structures. In the present study, anti-biofouling metallic surfaces with nanostructures superimposed on curved micro-riblets were produced via top-down fabrication. According to the attachment theory, these surfaces feature few attachment points for organisms, the nanostructures prevent the attachment of bacteria and algal zoospores, while the micro-riblets prohibit the settlement of macrofoulers. Anodic oxidation was performed to induce superhydrophilicity. It forms a hydration layer on the surface, which physically blocks foulant adsorption along with the anti-biofouling topography. We characterized the surfaces via scanning electron and atomic force microscopy, contact-angle measurement, and wear-resistance testing. The contact angle of the hierarchical structures was less than 1°. Laboratory settlement assays verified that bacterial attachment was dramatically reduced by the nanostructures and/or the hydration layer, attributable to superhydrophilicity. The micro-riblets prohibited the settlement of macrofoulers. Over 77 days of static immersion in the sea during summer, the metallic surface showed significantly less biofouling compared to a surface painted with an anticorrosive coating.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7083
Author(s):  
Sergio Santos ◽  
Tuza A. Olukan ◽  
Chia-Yun Lai ◽  
Matteo Chiesa

Here, we discuss the effects that the dynamics of the hydration layer and other variables, such as the tip radius, have on the availability of imaging regimes in dynamic AFM—including multifrequency AFM. Since small amplitudes are required for high-resolution imaging, we focus on these cases. It is possible to fully immerse a sharp tip under the hydration layer and image with amplitudes similar to or smaller than the height of the hydration layer, i.e., ~1 nm. When mica or HOPG surfaces are only cleaved, molecules adhere to their surfaces, and reaching a thermodynamically stable state for imaging might take hours. During these first hours, different possibilities for imaging emerge and change, implying that these conditions must be considered and reported when imaging.


2021 ◽  
Vol 9 (3) ◽  
pp. 01-05
Author(s):  
Pawlak Pawlak ◽  
M. Sojka

Phospholipids bilayers fulfill an important role in natural joint lamellar-repulsive lubrication mechanism. Low friction between surfaces coated with negatively charged the phospholipid headgroup (–PO4-) as being due to a hydration layer. Wettability of the cartilage surface depends on the number of PLs that act as a lubricant. The cartilage can be classified as a group of intelligent material, which in the wet state has a contact angle of ~0º, and the air-dry state has a contact angle of ~104º.


2021 ◽  
pp. 120076
Author(s):  
Zhu Xiong ◽  
Jiangtao Liu ◽  
Yang Yang ◽  
Qiaoyun Lai ◽  
Xueyan Wu ◽  
...  

Author(s):  
Madhurima Chattopadhyay ◽  
Emilia Krok ◽  
Hanna Orlikowska ◽  
Petra Schwille ◽  
Henri G. Franquelim ◽  
...  

2021 ◽  
Author(s):  
Madhurima Chattopadhyay ◽  
Emilia Krok ◽  
Hanna Orlikowska ◽  
Petra Schwille ◽  
Henri G. Franquelim ◽  
...  

Self-assembly of biomembranes results from the intricate interactions between water and the lipids' hydrophilic head groups. Therefore, the lipid-water interplay strongly contributes to modulating membranes architecture, lipid diffusion, and chemical activity. Here, we introduce a new method of obtaining dehydrated, phase-separated, supported lipid bilayers (SLBs) solely by controlling the decrease of their environment's relative humidity. This facilitates the study of the structure and dynamics of SLBs over a wide range of hydration states. We show that the lipid domain structure of phase-separated SLBs is largely insensitive to the presence of the hydration layer. In stark contrast, lipid mobility is drastically affected by dehydration, showing a 6-fold decrease in lateral diffusion. At the same time, the diffusion activation energy increases approximately twofold for the dehydrated membrane. The obtained results, correlated with the hydration structure of a lipid molecule, revealed that about 6-7 water molecules directly hydrating the phosphocholine moiety play a pivotal role in modulating lipid diffusion. These findings could provide deeper insights into the fundamental reactions where local dehydration occurs, for instance during cell-cell fusion, and help us better understand the survivability of anhydrobiotic organisms. Finally, the strong dependence of lipid mobility on the number of hydrating water molecules opens up an application potential for SLBs as very precise, nanoscale hydration sensors.


Sign in / Sign up

Export Citation Format

Share Document