A thermal-hydrodynamic model to evaluate the potential of different tray designs for production of renewable aviation fuel through reactive distillation

Author(s):  
Efraín Quiroz-Pérez ◽  
Claudia Gutiérrez-Antonio ◽  
Julio Armando de Lira-Flores ◽  
Richart Vázquez-Román
Author(s):  
Claudia Gutiérrez-Antonio ◽  
Maritza L. Soria Ornelas ◽  
Fernando Israel Gómez-Castro ◽  
Salvador Hernández

2020 ◽  
pp. 49-56
Author(s):  
Vitaly V. Volkov ◽  
Michael A. Suslin ◽  
Jamil U. Dumbolov

One of the conditions for ensuring the safety of air transport operation is the quality of aviation fuel refueled in aircraft. Fuel quality control is a multi-parameter task that includes monitoring the free moisture content. Regulatory documents establish the content of free water no more than 0.0015% by weight. It is developed a direct electrometric microwave resonance method for controlling free moisture in aviation fuels, which consists in changing the shape of the water drops by pressing them on a solid surface inside a cylindrical cavity resonator. This can dramatically increase dielectric losses. Analytical and experimental analysis of the proposed method is carried out. The control range from 0,5 to 30 μl of absolute volume of moisture in aviation fuels with a maximum error of not morethan 25 % is justified. The sensitivity of the proposed method for monitoring microwave losses in free moisture drops transformed into a thin layer by pressing is an order of magnitude greater than the sensitivity of the method for monitoring microwave losses in moisture drops on a solid surface in a resonator. The proposed method can be used as a basis for the development of devices for monitoring the free moisture of aviation fuels in the conditions of the airfield and laboratory. The direction of development of the method is shown.


Author(s):  
Salavat Mudarisov ◽  
Ildar Farkhutdinov ◽  
Airat Mukhametdinov ◽  
Raushan Aminov ◽  
Rustam Bagautdinov ◽  
...  

Clean Air ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 1-24
Author(s):  
M. Pourkashanian ◽  
N. S. Mera ◽  
Lionel Elliott ◽  
C. W. Wilson ◽  
Derek B. Ingham ◽  
...  

2020 ◽  
Author(s):  
Joseph Matthews ◽  
Madhu Pandey

Propeller planes and small engine aircraft around the United States, legally utilize leaded aviation gasoline. The purpose of this experiment was to collect suspended particulate matter from a university campus, directly below an airport’s arriving flight path’s descent line, and to analyze lead content suspended in the air. Two collection sets of three separate samples were collected on six separate days, one set in July of 2018 and the second set in January 2019.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Iskendar Iskendar ◽  
Andi Jamaludin ◽  
Paulus Indiyono

This paper describes hydrodynamic model tests of Wing in Surface Effect (WiSE) Craft. These craft  was fitted with  stephull  form in different location on longitudinal flat bottom (stepedhull planning craft) to determine the influences of sticking and porpoising motion performances. These motions are usually occured when the craft start to take-off from water surfaces. The test models with scale of 1 : 7 were comprised of 4 (four) stephull models and 1 (one) non-stephull model  as a comparative study. The hydrodynamic  tests were performed with craft speed of 16 – 32 knots (prototype values) in Towing Tank at UPT. Balai Pengkajian dan Penelitian Hidrodinamika (BPPH), BPPT, Surabaya. The resistance (drag) was measured by dynamo meter and the trim of model (draft changing at fore and aft  of model due to model speed) was measured by trim meter. By knowing the value of model trim, the wetted surface area can be determined. Then, the lift forces were calculated based on these measured values. The model test results were presented on tables and curves.  Test results show that models  with step located far away from center of gravity of the WiSE craft tend to porpoising and sticking condition, except if the step location on the below of these center of gravity. While model without step tends to sticking conditions.


Sign in / Sign up

Export Citation Format

Share Document