The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings

2015 ◽  
Vol 41 (3) ◽  
pp. 4312-4325 ◽  
Author(s):  
Meng Han ◽  
Jihua Huang ◽  
Shuhai Chen
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 275
Author(s):  
Zhi-Yuan Wei ◽  
Hong-Neng Cai

The TC/BC interface morphology in APS TBC is one of the important factors leading to crack propagation and coating failure. Long cracks are found near the bulge on the TC/BC interface. In this study, the TBC model with the bulge on the interface is developed to explore the influence of the bulge on the coating failure. Dynamic TGO growth and crack propagation are considered in the model. The effects of the bulge on the stress state and crack propagation in the ceramic layer are examined. Moreover, the effects of the distribution and number of bulges are also investigated. The results show that the bulge on the interface results in the redistribution of local stress. The early cracking of the ceramic layer occurs near the top of the bulge. One bulge near the peak or valley of the interface leads to a coating life reduction of about 75% compared with that without a bulge. The increase in the number of bulges further decreases the coating life, which is independent of the bulge location. The results in this work indicate that a smooth TC/BC interface obtained by some possible surface treatments may be an optional scenario for improving coating life.


2021 ◽  
Vol 320 ◽  
pp. 31-36
Author(s):  
Marek Góral ◽  
Tadeusz Kubaszek ◽  
Barbara Kościelniak ◽  
Marcin Drajewicz ◽  
Mateusz Gajewski

Thermal barrier coatings are widely used for protection of gas turbine parts against high temperature oxidation and hot corrosion. In present work the microstructural assessment of TBCs produced by atmospheric plasma spray (APS) method was conducted. Three types of ceramic powders were used: magnesia- stabilized zirconia oxide (Metco 210), yttria stabilized zirconia oxide (YSZ -Metco 204) and fine-grained YSZ – Metco 6700. As a base material the Inconel 713 was used as well and CoNiCrAlY was plasma sprayed (APS) as a bond coat. The thickness of all ceramic layers was in range 80 – 110 μm. The elemental mapping of cross-section of magnesia-stabilized zirconia showed the presence of Mg, Zr and O in outer layer. In the YSZ ceramic layer the Y, Zr and O were observed during elemental mapping. The isothermal oxidation test was conducted at 1100 °C for 500 h in static laboratory air. On all samples the delamination and spallation of ceramic layers was observed. Chemical composition analysis of coatings showed the presence of two areas: the first one contained elements from bond coats: Ni, Cr, Al, Co and second area contained O, Cr Co and O that suggest the scale formation. The obtained results showed the total degradation of all ceramic layers as a result of internal stresses in bond-coat. Microscopic analysis showed the areas with complete degradation of bond coats and formation of thick oxides layer.


2017 ◽  
Vol 62 (3) ◽  
pp. 1433-1437
Author(s):  
A. Jasik

Abstract The paper presents the results of numerical calculations of temperature and thermal stress distribution in thermal barrier coatings deposited by thermal spraying process on the nickel based superalloy. An assumption was made to apply conventional zirconium oxide modified with yttrium oxide (8YSZ) and apply pyrochlore type material with formula La2Zr2O7. The bond coat was made of NiCoCrAlY. Analysis of the distribution of temperature and stresses in ceramic coatings of different thicknesses was performed in the function of bond-coat thickness and the type of ceramic insulation layer. It was revealed that the thickness of NiCrAlY bond-coat has not significant influence on the stress distribution, but there is relatively strong effect on temperature level. The most important factor influenced on stress distribution in TBC system is related with type and properties of ceramic insulation layer.


Sign in / Sign up

Export Citation Format

Share Document