Effect of micro-sized alumina powder on the hydration products of calcium aluminate cement at 40 °C

2016 ◽  
Vol 42 (13) ◽  
pp. 14391-14394 ◽  
Author(s):  
Xuejun Shang ◽  
Guotian Ye ◽  
Yaqian Zhang ◽  
Huanhuan Li ◽  
Dan Hou
2018 ◽  
Vol 281 ◽  
pp. 249-254
Author(s):  
Zhong Feng Xia ◽  
Zhou Fu Wang ◽  
Xi Tang Wang ◽  
Hao Liu ◽  
Yan Ma

Micro-sized alumina powder is widely used in low cement high-alumina refractory castables. The hydration of calcium aluminate cement can be affected by adding micro-sized alumina powder. This work addresses the hydration of a commercial cement at 25°C with 50 wt% micro-sized alumina powder added. The hydration heat was measured by isothermal micro-calorimetry. The phase composition and microstructure of the hydration products at the designated times were studied by XRD and SEM, respectively. The results showed that micro-sized alumina powder accelerated the dissolution of CAC. The induction period of the cement hydration reduced from 13h to 4.5h, and the hydration heat within 50hs was increased from 469J/g to 587J/g with the addition of micro-sized alumina powder. The morphology of the hydrates was flocculent amorphous at the beginning, and then transformed to short rods or cubic shape with micro-sized alumina powder added.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3855
Author(s):  
Amirmohamad Abolhasani ◽  
Bijan Samali ◽  
Fatemeh Aslani

One commonly used cement type for thermal applications is CAC containing 38–40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.


2013 ◽  
Vol 115 (2) ◽  
pp. 1245-1252 ◽  
Author(s):  
František Šoukal ◽  
Petr Ptáček ◽  
Jiří Másilko ◽  
Tomáš Opravil ◽  
Jaromír Havlica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document