Hydration kinetics of CA2 and CA—Investigations performed on a synthetic calcium aluminate cement

2013 ◽  
Vol 43 ◽  
pp. 62-69 ◽  
Author(s):  
S.R. Klaus ◽  
J. Neubauer ◽  
F. Goetz-Neunhoeffer
2015 ◽  
Vol 154 ◽  
pp. 158-163 ◽  
Author(s):  
Boquan Zhu ◽  
Yanan Song ◽  
Xiangcheng Li ◽  
Pingan Chen ◽  
Zheng Ma

2019 ◽  
Vol 138 (6) ◽  
pp. 4561-4569 ◽  
Author(s):  
Wiesława Nocuń-Wczelik ◽  
Katarzyna Stolarska

Abstract The studies focused on the kinetics of early hydration in the high-calcium aluminate cement (CAC 70)—by-pass cement kiln dusts (BPCKD)—mixtures. For this purpose, the mixtures of cement with this additive or with some potential constituents of dusts were produced. The microcalorimeter was applied to follow the kinetics of hydration. The investigations with the aim of finding the relationship between the components of initial mixtures and the modification of hydration process were carried out. The rheological properties were characterized, and the chemical shrinkage characteristics were produced. The phase assemblage characterization and microscopic observations were done as well. In case of the high-calcium aluminate-based binders, the modification of setting process was observed; the rheological properties and chemical shrinkage were affected too. The acceleration of heat evolution—the shortening of so-called induction period in the presence of BPCKD additive—was observed. The results were compared to those obtained for the CAC with ordinary Portland cement additive. The results of calorimetric measurements are discussed in terms of the chemical and phase assemblage of this additive as compared to the Portland cement clinker precursors and potassium chloride—the solid and liquid components of the dust.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hee Jun Yang ◽  
Ki Yong Ann ◽  
Min Sun Jung

In the present study, the development of strength in different calcium aluminate cement (CAC) mixture mortars with granulated ground blast-furnace slag (GGBS) was investigated. The substitution of GGBS levels was 0, 20, 40, and 60% weight of binder, of which the CAC used in this study naturally contained C2AS clinker as a secondary phase. To activate a hydraulic nature of the phase, in addition to the mineral additive, all specimens were cured at 35 ± 2°C for the first 24 hours and then stored in a 95% humidity chamber at 25 ± 2°C. The penetration resistance of fresh mortar was measured immediately after pouring, and the mortar compressive strength was monitored for 365 days. Simultaneously, to evaluate the hydration kinetics at early ages, in terms of heat evolution, the calorimetric analysis was performed at the isothermal condition (35°C) for 24 hours. The hydration behavior in the long term was characterized by X-ray diffraction, which was supported by microscopic observation using scanning electron microscopy with energy dispersive spectroscopy. Furthermore, an examination of the pore structure was accompanied to quantify the porosity. As a result, it was found that an increase in the GGBS content in the mixture resulted in an increased setting time, as well as total heat evolved for 24 hours in normalized calorimetry curves. In addition, the strength development of mortar showed a continuous increased value up to 365 days, accounting 43.8–57.5 MPa for the mixtures, due to a formation of stratlingite, which was identified at the pastes cured for 365 days using chemical and microscopic analysis. However, GGBS replacement did not affect on the pore size distribution in the cement matrix, except for total intrusion volume.


2016 ◽  
Vol 680 ◽  
pp. 455-461 ◽  
Author(s):  
Hao Dai ◽  
Shu Peng Zhang ◽  
Cheng Lan Ju ◽  
Dong Xu Li

The effect of calcium sulfates varieties on the properties of calcium aluminate cement-based self-leveling mortar have been investigated, and the hydration kinetics, hydrated products and microstructures are characterized by isothermal calorimeter, X-ray diffraction and mercury intrusion porosimetry, respectively. The results show that the technological properties of mortars are significantly affected by calcium sulfate varieties and content. The setting times are shortened drastically with the addition of calcium sulfates. Mortars with hemihydrate show higher early strength and less drying shrinkage. In contrast, using anhydrite in mortars cause lower strength and higher drying shrinkage at early age but larger growth of strength in the late. The increasing calcium sulfates content may result in the delay of main hydration peak in the heat evolution curve. For formulation with hemihydrate, the appearance of main hydration peaks are advanced compared with formulation without addition of calcium sulfates. Moreover, mortar microstructures are optimized by addition of β-hemihydrate, the proportion of large pores are lower than that of mortars with anhydrite.


2002 ◽  
Vol 17 (7) ◽  
pp. 1834-1842 ◽  
Author(s):  
S. Goñi ◽  
M. T. Gaztañaga ◽  
A. Guerrero

The carbonation of two hydrated ordinary portland cements of alkali content 1.03% or 0.43% Na2O equivalent and hydrated calcium aluminate cement (0.1% Na2O equivalent) was studied in a semi-dynamic atmosphere of 100% CO2, and 65% relative humidity at 20 ± 1 °C, for a period of 100 days. The changes of the microstructure before and during the carbonation were characterized by x-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy. The kinetics of the process was evaluated from the total CaCO3 content by means of thermogravimetric analysis. The changes of the mechanical flexural strength were also studied. The pore solution was collected and analyzed before and after different periods of time. The results were compared with those obtained under natural carbonation conditions. The results showed that the alkali content of cement does not influence the kinetics of the process when the carbonation is accelerated. In the case of natural carbonation, an induction period is produced in the ordinary portland cement of low alkali content and calcium aluminate cement. The carbonation rate of calcium aluminate cement is the slowest for accelerated and natural carbonation.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3855
Author(s):  
Amirmohamad Abolhasani ◽  
Bijan Samali ◽  
Fatemeh Aslani

One commonly used cement type for thermal applications is CAC containing 38–40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.


Sign in / Sign up

Export Citation Format

Share Document