Interstitial diffusion of a helium atom in bulk Li4SiO4 crystal from first-principles calculations

2020 ◽  
Vol 46 (6) ◽  
pp. 8192-8199
Author(s):  
Ruijie Zhang ◽  
Shenggui Ma ◽  
Qingqing Wang ◽  
Chengjian Xiao ◽  
Chuanyu Zhang ◽  
...  
2012 ◽  
Vol 1440 ◽  
Author(s):  
Ka Xiong ◽  
Roberto Longo Pazos ◽  
Kyeongjae Cho

ABSTRACTWe investigate the electronic structure of interstitial Li and Li vacancy in Li10GeP2S12 by first principles calculations. We find that the Li vacancy and interstitial Li+ ion do not introduce states in the band gap hence they do not deteriorate the electronic properties of Li10GeP2S12. The energy barrier for Li interstitial diffusion in Li10GeP2S12 is estimated to be 1.4 eV, which is much larger than that of the Li vacancy in Li10GeP2S12. This fact suggests that the ion conductivity arises from the migration of Li vacancy.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


Sign in / Sign up

Export Citation Format

Share Document