Direct evidence of high oxygen ion conduction of perovskite-type ceramic membrane under hydrogen atmosphere in solid oxide fuel cell

2021 ◽  
Vol 47 (2) ◽  
pp. 2115-2122
Author(s):  
Yuexia Ji ◽  
Xinchao Yu ◽  
Jiafeng Cao
2016 ◽  
Vol 835 ◽  
pp. 199-236 ◽  
Author(s):  
Pradyot Datta

Depletion of fossil fuel at an alarming rate is a major concern of humankind. Consequently, researchers all over the world are putting a concerted effort for finding alternative and renewable energy. Solid oxide fuel cell (SOFC) is one such system. SOFCs are electrochemical devices that have several advantages over conventional power generation systems like high efficiency of power generation, low emission of green house gases and the fuel flexibility. The major research focus of recent times is to reduce the operating temperature of SOFC in the range of 500 to 700 °C so as to render it commercially viable. This reduction in temperature is largely dependent on finding an electrolyte material with adequate oxygen ion conductivity at the intended operating temperature. One much material is Gadolinia doped Ceria (CGO) that shows very good oxygen ion conductivity at the intended operation temperature. The aim of this overview is to highlight the contribution that materials chemistry has made to the development of CGO as an electrolyte.


2012 ◽  
Vol 554-556 ◽  
pp. 404-407 ◽  
Author(s):  
Shi Jing Zhan ◽  
Xue Feng Zhu ◽  
Wei Ping Wang ◽  
Wei Shen Yang

Solid oxide components such as electrolyte for solid oxide fuel cell require chemical stability and high conductivity. Substituting Zr for Ce in BaCe0.8Nd0.2O3-δ improves the chemical stability but reduces conductivity. The objective of this work was to study the optimization of conductivity and chemical stability by changing the ratio of Ce to Zr in BZCN. Perovskite type BaZrxCe0.8-xNd0.2O3-δ (BZCN) powders were prepared by an EDTA–citric acid (EC) process. BaZrxCe0.8-xNd0.2O3-δ (x≥0.4) oxides show good chemical stability against carbon dioxide. The conductivities of sintered samples increased with the temperature and decrease with their Zr content. The good chemical stability and conductivity of BaZr0.4Ce0.4Nd0.2O3-δ is potential to be practically used with both high conductivity and good stability


2011 ◽  
Vol 52-54 ◽  
pp. 1544-1550 ◽  
Author(s):  
Samaneh Shahgaldi ◽  
Zahira Yaakob ◽  
Dariush Jafar Khadem ◽  
Wan Ramli Wan Daud

In recent years, one dimensional nanostructure, nanofibers with unique properties have been subjected of intense research due to potential properties in many applications. This study presents synthesize of Perovskite-type Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF) nanofibers using sol-gel via electrospinning as a cathode for intermediate temperature solid oxide fuel cell. BSCF nanofibers are prepared by treating electrospun polyvinyl Pyrrolidon/ Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite fibers at high temperature in an air atmosphere. BSCF nanofibers were characterized by x-ray diffraction (XRD) to observe desired structure, scanning electron microscopy (SEM) to investigated the morphology of fibers, and Brunauer, Emmett and Teller (BET) for measuring the surface area. To the best of our knowledge, investigation on Ba0.5Sr0.5 Co0.2 Fe 0.8O3−δ nanofibers has not been reported up to now.


Sign in / Sign up

Export Citation Format

Share Document