Effects of sintering temperature and Bi2O3, Y2O3 and MgO co-doping on the dielectric properties of X8R BaTiO3-based ceramics

Author(s):  
Ruizhao Liu ◽  
Zhiwu Chen ◽  
Zhenya Lu ◽  
Xin Wang
2010 ◽  
Vol 434-435 ◽  
pp. 224-227
Author(s):  
Xu Ping Lin ◽  
Jing Tao Ma ◽  
Bao Qing Zhang ◽  
Ji Zhou

The influence of CuO-V2O5-Bi2O3 addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Zn3Nb2O8 ceramics were investigated. The co- doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of Zn3Nb2O8 ceramics from 1150°C to 900°C. The Zn3Nb2O8-0.5wt% CuO-0.5wt% V2O5-2.0wt% Bi2O3 ceramic sintered at 900°C showed a relative density of 97.1%, a dielectric constant (εr) of 18.2, and a quality factor (Q×f) of 36781 GHz. The dielectric properties in this system exhibited a significant dependence on the relative density, content of additives and sintering temperature. The relative density and dielectric constant (εr) of Zn3Nb2O8 ceramics increased with increasing CuO-V2O5-Bi2O3 additions. And also the relative density and dielectric constant of Zn3Nb2O8 ceramics increased by the augment of the sintering temperature.


Author(s):  
Ying Xiong ◽  
Hongyuan Xie ◽  
Zhenggang Rao ◽  
Laijun Liu ◽  
Zhengfeng Wang ◽  
...  

AbstractAB2O4-type spinels with low relative permittivity (εr) and high quality factor (Q × f) are crucial to high-speed signal propagation systems. In this work, Zn2+/Ge4+ co-doping to substitute Ga3+ in ZnGa2O4 was designed to lower the sintering temperature and adjust the thermal stability of resonance frequency simultaneously. Zn1+xGa2−2xGexO4 (0.1 ⩽ x ⩽ 0.5) ceramics were synthesised by the conventional solid-state method. Zn2+/Ge4+ co-substitution induced minimal variation in the macroscopical spinel structure, which effectively lowered the sintering temperature from 1385 to 1250 °C. All compositions crystallized in a normal spinel structure and exhibited dense microstructures and excellent microwave dielectric properties. The compositional dependent quality factor was related to the microstructural variation, being confirmed by Raman features. A composition with x = 0.3 shows the best dielectric properties with εr ≈ 10.09, Q × f ≈ 112,700 THz, and τf ≈ −75.6 ppm/°C. The negative τf value was further adjusted to be near-zero through the formation of composite ceramics with TiO2.


2015 ◽  
Vol 29 (34) ◽  
pp. 1550220 ◽  
Author(s):  
Chunya Luo ◽  
Zhichao Ma ◽  
Laisheng Hu ◽  
Mingzhe Hu ◽  
Xiaomin Huang

The microwave dielectric properties of [Formula: see text]–[Formula: see text] (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. [Formula: see text] and [Formula: see text] were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of [Formula: see text] to tune the microwave dielectric properties of 95MCT. When the [Formula: see text] mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from [Formula: see text] to [Formula: see text] and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), [Formula: see text] and [Formula: see text], which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss [Formula: see text] dB) of center frequency.


2007 ◽  
Vol 336-338 ◽  
pp. 297-300 ◽  
Author(s):  
Jing Yan ◽  
Zhen Xing Yue ◽  
Jin Wang ◽  
Fei Zhao ◽  
Zhi Lun Gui ◽  
...  

Zinc titanate ceramics having excellent dielectric properties and low sintering temperature are promising materials for RF/microwave multilayer devices. In this paper, the ZnO-V2O5 addition was added to promote the sintering process in order to obtain low-temperature sintered ceramics with high quality factors. The sintering addition could also restrain ZnTiO3 phase from decomposition. Using this method, low-temperature sintered zinc titanate ceramics with excellent microwave dielectric properties of εr~ 25.3, Q×f~15200GHz, and τf ~ -16 ppm/oC were obtained at sintering temperature of 800oC. The low-fired mechanism, microstructure, phase formation and microwave dielectric properties of ceramics were investigated by XRD, SEM, EDS and network analysis techniques, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 1184-1188 ◽  
Author(s):  
Chun Ya Luo ◽  
Ming Zhe Hu ◽  
Quian Huang ◽  
Yang Fu ◽  
Hao Shuang Gu

The influence of ZnO and Nb2O5 additions on the sinterability, microstructure and microwave dielectric properties of (Mg0.95Ca0.05)TiO3 (abbreviated as 95MCT hereafter) ceramic is investigated. XRD patterns indicate that MgTi2O5 secondary phase can be effectively suppressed by ZnO and Nb2O5 additions, which is beneficial for improving the microwave dielectric properties. Appropriate amount of Nb2O5 addition can effectively improve the Qf value of 95MCT ceramic, which is suggested to be ascribed to the reduced oxygen vacancies. When the ZnO: Nb2O5 mole ratio is 1.5 and the co-doping content is 0.25wt%, the optimal microwave dielectric properties can be obtained Qf=72730GHz(6.8GHz), εr=20.29 and τf=-6.84ppm/°C and the sintering temperature of 95MCT is lowered from 1400°C to 1320°C.


Sign in / Sign up

Export Citation Format

Share Document