Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor

Author(s):  
Xin Xu ◽  
Mengxing Zhang ◽  
Pan Jiang ◽  
Desheng Liu ◽  
Yixian Wang ◽  
...  
2013 ◽  
Vol 68 (10) ◽  
pp. 2309-2315 ◽  
Author(s):  
C. P. Theologides ◽  
P. G. Savva ◽  
G. G. Olympiou ◽  
N. A. Pantelidou ◽  
B. K. Constantinou ◽  
...  

The present paper involves a detailed study of the selective catalytic reduction of nitrates in aqueous mediums by the use of H2 in the presence of O2 over monometallic and bimetallic supported catalysts. In this study, an attempt has been made to improve the denitrification efficiency (XNO3−, SN2) of several catalysts by regulating some experimental parameters that are involved in the process. Therefore, the effects of the type of reactor (semi-batch reactor vs continuous flow reactor), the nature of the active phase (Pd, Cu, and Pd-Cu) and the particle size of γ-Al2O3 spheres (particle diameter = 1.8 mm and 3 mm) on catalytic activity and reaction selectivity, as well as the adsorption capacity of γ-Al2O3 spheres for nitrates, were examined. As the review indicates, most of the research has so far been conducted on batch or semi-batch reactors. This study successfully demonstrates the benefits of using a continuous flow reactor in terms of catalytic activity (XNO3−, %) and reaction selectivity (SN2, %). Another important aspect of this study is the crucial role of bimetallic Pd-Cu clusters for the prevention of NH4+ formation. Moreover, the use of 1.8 mm diameter γ-Al2O3 spheres as a support was proved to significantly enhance the catalytic performance of bimetallic Pd-Cu catalysts towards nitrate reduction compared to 3 mm diameter γ-Al2O3 spheres. This difference may be attributed to mass (NO3−, OH−) transfer effects (external mass transfer phenomena).


2018 ◽  
Vol 69 (6) ◽  
pp. 1363-1366 ◽  
Author(s):  
Stefania Daniela Bran ◽  
Petre Chipurici ◽  
Mariana Bran ◽  
Alexandru Vlaicu

This paper has aimed at evaluating the concentration of bioethanol obtained using sunflower stem as natural support, molasses as carbon source and Saccharomyces cerevisiae yeast in a continuous flow reactor. The natural support was tested to investigate the immobilization/growth of S. cerevisiae yeast. The concentration of bioethanol produced by fermentation was analyzed by gas chromatography using two methods: aqueous solutions and extraction in organic phase. The CO2 flow obtained during the fermentation process was considered to estimate when the yeast was deactivated. The laboratory experiments have highlighted that the use of plant-based wastes to bioconversion in ethanol could be a non-pollutant and sustainable alternative.


2020 ◽  
Vol 8 (35) ◽  
pp. 13195-13205 ◽  
Author(s):  
Swathi Mukundan ◽  
Daria Boffito ◽  
Abhijit Shrotri ◽  
Luqman Atanda ◽  
Jorge Beltramini ◽  
...  

2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2017 ◽  
Vol 115 (3) ◽  
pp. 606-616 ◽  
Author(s):  
Stephanie A. Parker ◽  
Linus Amarikwa ◽  
Kevin Vehar ◽  
Raquel Orozco ◽  
Scott Godfrey ◽  
...  

2006 ◽  
Vol 691 (24-25) ◽  
pp. 5197-5203 ◽  
Author(s):  
Zenon Lysenko ◽  
Bob R. Maughon ◽  
Tezi Mokhtar-Zadeh ◽  
Michael L. Tulchinsky

Sign in / Sign up

Export Citation Format

Share Document