Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions

2017 ◽  
Vol 171 ◽  
pp. 545-557 ◽  
Author(s):  
N.K. Ranjit ◽  
G.C. Shit ◽  
A. Sinha
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148002 ◽  
Author(s):  
Tasawar Hayat ◽  
Maryam Shafique ◽  
Anum Tanveer ◽  
Ahmed Alsaedi

2016 ◽  
Vol 21 (1) ◽  
pp. 5-20 ◽  
Author(s):  
K. Das ◽  
S. Jana ◽  
N. Acharya

Abstract In this study, the influence of temperature and wall slip conditions on the unsteady flow of a viscous, incompressible and electrically conducting nanofluid squeezed between two parallel disks in the presence of an applied magnetic field is investigated numerically. Using the similarity transformation, the governing coupled partial differential equations are transformed into similarity non-linear ordinary differential equations which are solved numerically using the Nachtsheim and Swigert shooting iteration technique together with the sixth order Runge-Kutta integration scheme. The effects of various emerging parameters on the flow characteristics are determined and discussed in detail. To check the reliability of the method, the numerical results for the skin friction coefficient and Nusselt number in the absence of slip conditions are compared with the results reported by the predecessors and an excellent agreement is observed between the two sets of results.


Author(s):  
Reza Monazami ◽  
Shahrzad Yazdi ◽  
Mahmoud A. Salehi

In this paper, a three-dimensional numerical model is developed to analyze the influence of the Joule heating on flow characteristics of an electroosmotic flow through square cross section micro-channels. The governing system of equations consists of three sets of equations: electric potential distribution, flow-field and energy equations. The solution procedure involves three steps. The net charge distribution on the cross section of the micro-channel is computed by solving two-dimensional Poisson-Boltzmann equation using the finite element method. Then, using the computed fluid’s charge distribution, the magnitude of the resulting body force due to interaction of an external electric field with the charged fluid elements is calculated along the micro-channel. Finally, three dimensional coupled Navier-Stokes and energy equations are solved by considering the presence of the electro-kinetic body forces and the volumetric heat generation due to Joule heating for three different external electric field strengths. The results reveal that flow patterns are significantly affected by temperature field distribution caused by Joule heating effect especially for high electric field strength cases.


2011 ◽  
Vol 189-193 ◽  
pp. 1946-1954 ◽  
Author(s):  
Ying Han Cao ◽  
Jin Nan Chen

The effect of wall conditions on the co-rotating parallel twin-screw extrusion of rigid polyvinyl chloride (RPVC) is studied. The relationship between the shear stress at the screw wall and the slip velocity of the flowing melt obeys Navier’s linear law. At zero pressure difference between the entrance and exit of the melting section of twin-screw extruder, the volumetric flow rate and 3D isothermal flow fields of RPVC are calculated under different wall slip conditions in the metering section of the twin-screw extruder by using the evolution technique in POLYFLOW. The results show that when the slip coefficient is smaller than 104Pa*s/m , the volumetric flow rate of the melt is constant, corresponding to the full slip condition. When the slip coefficient is larger than 104Pa*s/m , with the slip coefficient decreasing, the volumetric flow rate and viscosity increase, but the gradients of velocity, pressure, and shear rate decrease. The residual stress of the product is thus reduced. Therefore, increasing wall slip is good for the stability of polymer extrusion and the product quality. The dispersive and the distributive mixing of the twin-screw extruder under full slip and no slip conditions are also studied. Results show that the mixing performance under no-slip condition is better than under full-slip condition, but slip at the wall is good for the extrusion of heat-sensitive materials.


Sign in / Sign up

Export Citation Format

Share Document