Mixing time and mass transfer of rising bubbles in swarm turbulence

2018 ◽  
Vol 187 ◽  
pp. 367-376 ◽  
Author(s):  
Ulf Daniel Kück ◽  
Ulrich Mießner ◽  
Murat Aydin ◽  
Jorg Thöming
Keyword(s):  
Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1311 ◽  
Author(s):  
Marian Kordas ◽  
Maciej Konopacki ◽  
Bartłomiej Grygorcewicz ◽  
Adrian Augustyniak ◽  
Daniel Musik ◽  
...  

Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas–liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer ratio in BioFlo® bioreactors. The proposed correlations may be applied for the design of a scaled-up or scaled-down bioreactors.


2019 ◽  
Vol 7 ◽  
Author(s):  
Luis F. M. Rosa ◽  
Steffi Hunger ◽  
Tom Zschernitz ◽  
Beate Strehlitz ◽  
Falk Harnisch
Keyword(s):  

2019 ◽  
Vol 876 ◽  
pp. 818-829 ◽  
Author(s):  
Florence Raynal ◽  
Romain Volk

We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coefficient $D_{dp}$. Mixing is delayed when $D_{dp}>0$ (salt-attracting configuration), or faster when $D_{dp}<0$ (salt-repelling configuration). In both configurations, as for molecular diffusion alone, large scales are barely affected in the dilating direction while the Batchelor scale for the colloids, $\ell _{c,diff}$, is strongly modified by diffusiophoresis. We propose here to measure a global effect of diffusiophoresis in the mixing process through an effective Péclet number built on this modified Batchelor scale. Whilst this small scale is obtained analytically for the stagnation point, in the case of chaotic advection, we derive it using the equation of gradients of concentration, following Raynal & Gence (Intl J. Heat Mass Transfer, vol. 40 (14), 1997, pp. 3267–3273). Comparing to numerical simulations, we show that the mixing time can be predicted by using the same function as in absence of salt, but as a function of the effective Péclet numbers computed for each configuration. The approach is shown to be valid when the ratio $D_{dp}^{2}/D_{s}D_{c}\gg 1$, where $D_{c}$ and $D_{s}$ are the diffusivities of the colloids and salt.


2022 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Diana Kreitmayer ◽  
Srikanth R. Gopireddy ◽  
Tomomi Matsuura ◽  
Yuichi Aki ◽  
Yuta Katayama ◽  
...  

Understanding the hydrodynamic conditions in bioreactors is of utmost importance for the selection of operating conditions during cell culture process development. In the present study, the two-phase flow in the lab-scale single-use bioreactor XcellerexTM XDR-10 is characterized for working volumes from 4.5 L to 10 L, impeller speeds from 40 rpm to 360 rpm, and sparging with two different microporous spargers at rates from 0.02 L min−1 to 0.5 L min−1. The numerical simulations are performed with the one-way coupled Euler–Lagrange and the Euler–Euler models. The results of the agitated liquid height, the mixing time, and the volumetric oxygen mass transfer coefficient are compared to experiments. For the unbaffled XDR-10, strong surface vortex formation is found for the maximum impeller speed. To support the selection of suitable impeller speeds for cell cultivation, the surface vortex formation, the average turbulence energy dissipation rate, the hydrodynamic stress, and the mixing time are analyzed and discussed. Surface vortex formation is observed for the maximum impeller speed. Mixing times are below 30 s across all conditions, and volumetric oxygen mass transfer coefficients of up to 22.1 h−1 are found. The XDR-10 provides hydrodynamic conditions which are well suited for the cultivation of animal cells, despite the unusual design of a single bottom-mounted impeller and an unbaffled cultivation bioreactor.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hayder Mohammed Issa

Multiple or dual impellers are widely implemented in stirred contactors used in various biological processes like fermentation, water treatment, and pharmaceutical production. The spacing between impellers is considered as a crucial factor in designing of these types of contactors resulting in variation of oxygen mass transfer, mixing time, or power consumption for such biological system. A study of three parts was conducted to characterize the effect of the spacing between impellers on the most important parameters that related to biological contactor performance: oxygen mass transfer coefficientklafrom the gas phase (air) to the liquid phase (water), mixing time, and power consumption for different operating rotational speeds (1.67–3.33 rps) and for three different spacing positions. The used impellers system in the study is a dual impeller system which consists of an inverted and bladed rotated cone (IBRC) and a pitched-blade up-flow propeller (PBPU). The experimental results showed that the shorter spacing (the lower PBPU in a higher position) is more convenient, as the achieved oxygen mass transfer coefficient has showed an improvement in its values with lower mixing time and with a slight alteration in power consumption.


Sign in / Sign up

Export Citation Format

Share Document