A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws

2021 ◽  
Vol 143 ◽  
pp. 110486
Author(s):  
Nisa Çelik ◽  
Aly R. Seadawy ◽  
Yeşim Sağlam Özkan ◽  
Emrullah Yaşar
Author(s):  
Sol Sáez

In this work we consider a generalized Ostrovsky equation depending on two arbitrary functions and we make an in-depth study of this equation. We obtain the Lie symmetries which are admitted by this equation and some exact solutions as a periodic or solitary waves, obtained through ordinary and partial differential equations. Also, by means of the concept of multiplier, we obtain a wide range of conservation laws which preserve properties of the generalized Ostrovsky equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Khadijo Rashid Adem ◽  
Chaudry Masood Khalique

In this paper, we study the two-dimensional nonlinear Kadomtsov-Petviashivilli-Benjamin-Bona-Mahony (KP-BBM) equation. This equation is the Benjamin-Bona-Mahony equation formulated in the KP sense. We first obtain exact solutions of this equation using the Lie group analysis and the simplest equation method. The solutions obtained are solitary waves. In addition, the conservation laws for the KP-BBM equation are constructed by using the multiplier method.


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chaudry Masood Khalique

We study a coupled Zakharov-Kuznetsov system, which is an extension of a coupled Korteweg-de Vries system in the sense of the Zakharov-Kuznetsov equation. Firstly, we obtain some exact solutions of the coupled Zakharov-Kuznetsov system using the simplest equation method. Secondly, the conservation laws for the coupled Zakharov-Kuznetsov system will be constructed by using the multiplier approach.


Sign in / Sign up

Export Citation Format

Share Document