Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects

2021 ◽  
Vol 152 ◽  
pp. 111428
Author(s):  
V. Puneeth ◽  
S. Manjunatha ◽  
J.K. Madhukesh ◽  
G.K. Ramesh
Author(s):  
Tasawar Hayat ◽  
Bilal Ashraf ◽  
Sabir Ali Shehzad ◽  
A. Alsaedi ◽  
N. Bayomi

Purpose – The purpose of this paper is to investigate the three-dimensional mixed convection flow of viscoelastic nanofluid induced by an exponentially stretching surface. Design/methodology/approach – Similarity transformations are utilized to reduce the partial differential equations into the ordinary differential equations. The corresponding non-linear problems are solved by homotopy analysis method. Findings – The authors found that an increase in thermophoresis and Brownian motion parameter enhance the temperature. Here thermal conductivity of fluid is enhanced due to which higher temperature and thicker thermal boundary layer thickness is obtained. Practical implications – Heat and mass transfer effects in mixed convection flow over a stretching surface have numerous applications in the polymer technology and metallurgy. Such flows are encountered in metallurgical processes which involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid and that in the process of drawing, these strips are sometimes stretched. Originality/value – Three-dimensional flows over an exponentially stretching surface are very rare in the literature. Three-dimensional flow of viscoelastic nanofluid due to an exponentially stretching surface is first time investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


2011 ◽  
Vol 60 (5) ◽  
pp. 325-345 ◽  
Author(s):  
Xavier Nicolas ◽  
Marc Medale ◽  
Stéphane Glockner ◽  
Stéphane Gounand

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose This paper aims to probe the problem of an unsteady mixed convection stagnation point flow and heat transfer past a stationary surface in an incompressible viscous fluid numerically. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation, which is then solved numerically by a Runge – Kutta – Fehlberg method with shooting technique and a collocation method, namely, the bvp4c function. Findings The effects of the governing parameters on the fluid flow and heat transfer characteristics are illustrated in tables and figures. It is found that dual (upper and lower branch) solutions exist for both the cases of assisting and opposing flow situations. A stability analysis has also been conducted to determine the physical meaning and stability of the dual solutions. Practical implications This theoretical study is significantly relevant to the applications of the heat exchangers placed in a low-velocity environment and electronic devices cooled by fans. Originality/value The case of suction on unsteady mixed convection flow at a three-dimensional stagnation point has not been studied before; hence, all generated numerical results are claimed to be novel.


2007 ◽  
Vol 44 (9) ◽  
pp. 1035-1040 ◽  
Author(s):  
A. A. Mohammadein ◽  
W. A. Aissa ◽  
Rama Subba Reddy Gorla

Sign in / Sign up

Export Citation Format

Share Document