Origin and evolution of Suru Valley ophiolite peridotite slice along Indus suture zone, Ladakh Himalaya, India: Implications on melt-rock interaction in a subduction-zone environment

Geochemistry ◽  
2019 ◽  
Vol 79 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Irfan Maqbool Bhat ◽  
Talat Ahmad ◽  
D.V. Subba Rao
1983 ◽  
Vol 73 (4) ◽  
pp. 205-219 ◽  
Author(s):  
M. P. Searle

ABSTRACTThe Tibetan–Tethys zone of the Zanskar Himalaya shows a complete Mesozoic shelf carbonate sequence overlying metamorphic basement of the Central crystalline complex and Palaeozoic sedimentary rocks. Continental rifting in the Permian produced the alkaline and basaltic Panjal volcanic rocks and by Triassic time a small ocean basin was developed in the Indus-Tsangpo zone. Stable sedimentation continued until the Middle-Late Cretaceous when a thick sequence of tholeiitic to andesitic island arc lavas (Dras arc) were erupted in the basin above a N-dipping subduction zone. The Spontang ophiolite was emplaced southwards onto the Zanskar shelf edge during latest Cretaceous or earliest Tertiary times.Following emplacement of the Spontang ophiolite, deep-sea sedimentation ended abruptly with initial collision between the Indian plate and the Dras island arc. Emplacement of the massive Ladakh (Trans-Himalayan) batholith along the southern margin of Tibet in late Cretaceous-Eocene time occurred by crustal melting as a result of northward subduction of Mesozoic oceanic crust along the Indus subduction zone. Southward-directed thrusting in both Zanskar and Indus zones accompanied ocean closure during the late Cretaceous–Eocene. Late Tertiary compression caused intense folding, overturning and a phase of northward-directed thrusting along the Indus suture zone and the northern margin of the Tibetan–Tethys zone, resulting in a large amount of crustal shortening.


2021 ◽  
pp. 1-20
Author(s):  
I.M. Bhat ◽  
T. Ahmad ◽  
D.V. Subba Rao ◽  
N.V. Chalapathi Rao

Abstract The Ladakh Himalayan ophiolites preserve remnants of the eastern part of the Neo-Tethyan Ocean, in the form of Dras, Suru Valley, Shergol, Spongtang and Nidar ophiolitic sequences. In Kohistan region of Pakistan, Muslim Bagh, Zhob and Bela ophiolites are considered to be equivalents of Ladakh ophiolites. In western Ladakh, the Suru–Thasgam ophiolitic slice is highly dismembered and consists of peridotites, pyroxenites and gabbros, emplaced as imbricate blocks thrust over the Mesozoic Dras arc complex along the Indus Suture Zone. The Thasgam peridotites are partially serpentinized with relict olivine, orthopyroxene and minor clinopyroxene, as well as serpentine and iron oxide as secondary mineral assemblage. The pyroxenites are dominated by clinopyroxene followed by orthopyroxene with subordinate olivine and spinel. Gabbros are composed of plagioclase and pyroxene (mostly replaced by amphiboles), describing an ophitic to sub-ophitic textural relationship. Geochemically, the studied rock types show sub-alkaline tholeiitic characteristics. The peridotites display nearly flat chondrite-normalized rare earth element (REE) patterns ((La/Yb)N = 0.6–1.5), while fractionated patterns were observed for pyroxenites and gabbros. Multi-element spidergrams for peridotites, pyroxenites and gabbros display subduction-related geochemical characteristics such as enriched large-ion lithophile element (LILE) and depleted high-field-strength element (HFSE) concentrations. In peridotites and pyroxenites, highly magnesian olivine (Fo88.5-89.3 and Fo87.8-89.9, respectively) and clinopyroxene (Mg no. of 93–98 and 90–97, respectively) indicate supra-subduction zone (SSZ) tectonic affinity. Our study suggests that the peridotites epitomize the refractory nature of their protoliths and were later evolved in a subduction environment. Pyroxenites and gabbros appear to be related to the base of the modern intra-oceanic island-arc tholeiitic sequence.


2008 ◽  
Vol 5 (7) ◽  
pp. 113
Author(s):  
Ram Awatar

DOI = 10.3126/hjs.v5i7.1302 Himalayan Journal of Sciences Vol.5(7) (Special Issue) 2008 p.113


2017 ◽  
Vol 90 (2) ◽  
pp. 154-158 ◽  
Author(s):  
Thungyani N. Ovung ◽  
Jyotisankar Ray ◽  
Biswajit Ghosh ◽  
Debabrata Mandal ◽  
Pallab Dasgupta ◽  
...  

1989 ◽  
Vol 26 (10) ◽  
pp. 2145-2158 ◽  
Author(s):  
P. K. Sims ◽  
W. R. Van Schmus ◽  
K. J. Schulz ◽  
Z. E. Peterman

The Early Proterozoic Penokean Orogen developed along the southern margin of the Archean Superior craton. The orogen consists of a northern deformed continental margin prism overlying an Archean basement and a southern assemblage of oceanic arcs, the Wisconsin magmatic terranes. The south-dipping Niagara fault (suture) zone separates the south-facing continental margin from the accreted arc terranes. The suture zone contains a dismembered ophiolite.The Wisconsin magmatic terranes consist of two terranes that are distinguished on the basis of lithology and structure. The northern Pembine–Wausau terrane contains a major succession of tholeiitic and calc-alkaline volcanic rocks deposited in the interval 1860–1889 Ma and a more restricted succession of calc-alkaline volcanic rocks deposited about 1835 – 1845 Ma. Granitoid rocks ranging in age from about 1870 to 1760 Ma intrude the volcanic rocks. The older succession was generated as island arcs and (or) closed back-arc basins above the south-dipping subduction zone (Niagara fault zone), whereas the younger one developed as island arcs above a north-dipping subduction zone, the Eau Pleine shear zone. The northward subduction followed deformation related to arc–continent collision at the Niagara suture at about 1860 Ma. The southern Marshfield terrane contains remnants of mafic to felsic volcanic rocks about 1860 Ma that were deposited on Archean gneiss basement, foliated tonalite to granite bodies ranging in age from about 1890 to 1870 Ma, and younger undated granite plutons. Following amalgamation of the two arc terranes along the Eau Pleine suture at about 1840 Ma, intraplate magmatism (1835 Ma) produced rhyolite and anorogenic alkali-feldspar granite that straddled the internal suture.


Sign in / Sign up

Export Citation Format

Share Document