Cross-dating of tree ring δ18O and δ13C time series

2008 ◽  
Vol 252 (1-2) ◽  
pp. 72-79 ◽  
Author(s):  
John Roden
2020 ◽  
Author(s):  
Tito Arosio ◽  
Malin M. Ziehmer ◽  
Kurt Nicolussi ◽  
Christian Schlüchter ◽  
Markus Leuenberger

Abstract. Stable isotopes in tree-ring cellulose are important tools for climatic reconstructions even though their interpretation could be challenging due to non-climate signals, primarily those related to tree ageing. Previous studies on the presence of tree-age related trends during juvenile as well as adult growth phases in δD, δ18O and δ13C time series yielded variable results that are not coherent among different plant species. We analysed possible trends in the extracted cellulose of tree-rings of 85 larch trees and 119 cembran pine trees, i.e. in samples of one deciduous and one evergreen conifer species collected at the treeline in the Alps covering nearly the whole Holocene. The age trend analyses of all tree-ring variables were conducted on the basis of mean curves established by averaging the cambial-age aligned tree series. For cambial ages over 100 years, our results prove the absence of any age-related effect in the δD, δ18O and δ13C time series for both the evergreen as well the deciduous conifer species, with the only exception of larch δD. However, for lower cambial ages, we found trends that differ for each isotope and species. I.e., mean δ13C values in larch do not vary with ageing and can be used without detrending, whereas those in cembran pine show a juvenile effect and the data should be detrended. Mean δ18O values present two distinct ageing phases for both species complicating detrending. Similarly, mean δD values in larch change in the first 50 yr whereas cembran pine between 50–100 yr. Values for these two periods of cambial age for δD and δ18O should be used with caution for climatic reconstructions, ideally complemented by additional information regarding mechanisms for these trends.


2020 ◽  
Vol 17 (19) ◽  
pp. 4871-4882
Author(s):  
Tito Arosio ◽  
Malin M. Ziehmer ◽  
Kurt Nicolussi ◽  
Christian Schlüchter ◽  
Markus Leuenberger

Abstract. Stable isotopes in tree-ring cellulose are important tools for climatic reconstructions even though their interpretation could be challenging due to nonclimate signals, primarily those related to tree aging. Previous studies on the presence of tree-age-related trends during juvenile as well as adult growth phases in δD, δ18O, and δ13C time series yielded variable results that are not coherent among different plant species. We analyzed possible trends in the extracted cellulose of tree rings of 85 larch trees and 119 cembran pine trees, i.e., in samples of one deciduous and one evergreen conifer species collected at the tree line in the Alps, covering nearly the whole Holocene. The age trend analyses of all tree-ring variables were conducted on the basis of mean curves established by averaging the cambial-age-aligned tree series. For cambial ages over 100 years, our results prove the absence of any age-related effect in the δD, δ18O, and δ13C time series for both the evergreen and the deciduous conifer species, with the only exception being larch δD. However, for lower cambial ages, we found trends that differ for each isotope and species; i.e., mean δ13C values in larch do not vary with aging and can be used without detrending, whereas those in cembran pine show a juvenile effect, and the data should be detrended. Mean δ18O values present two distinct aging phases for both species, complicating detrending. Similarly, mean δD values in larch change in the first 50 years, whereas cembran pine changes between 50 and 100 years. Values for these two periods of cambial age for δD and δ18O should be used with caution for climatic reconstructions, ideally complemented by additional information regarding mechanisms for these trends.


2019 ◽  
Author(s):  
Andrew R. Slaughter ◽  
Saman Razavi

Abstract. The assumption of stationarity in water resources no longer holds, particularly within the context of future climate change. Plausible scenarios of flows that fluctuate outside the envelope of variability of the gauging data are required to assess the robustness of water resources systems to future conditions. This study presents a novel method of generating weekly-time-step flows based on tree-ring chronology data. Specifically, this method addresses two long-standing challenges with paleo-reconstruction: (1) the typically limited predictive power of tree-ring data at the annual and sub-annual scale, and (2) the inflated short-term persistence in tree-ring time series and improper use of prewhitening. Unlike the conventional approach, this method establishes relationships between tree-ring chronologies and naturalised flow at a biennial scale to preserve persistence properties and variability of hydrological time series. Biennial flow reconstructions are further disaggregated to weekly, according to the weekly flow distribution of reference two-year instrumental periods, identified as periods with broadly similar tree-ring properties to that of every two-year paleo-period. The Saskatchewan River Basin (SaskRB), a major river in Western Canada, is selected as a study area, and weekly flows in its four major tributaries are extended back to the year 1600. The study shows that the reconstructed flows properly preserve the statistical properties of the reference flows, particularly, short- to long-term persistence and the structure of variability across time scales. An ensemble approach is presented to represent the uncertainty inherent in the statistical relationships and disaggregation method. The ensemble of reconstructed weekly flows are publically available for download from https://doi.org/10.20383/101.0139 (Slaughter and Razavi, 2019).


1992 ◽  
Vol 22 (9) ◽  
pp. 1215-1221 ◽  
Author(s):  
David K. Yamaguchi ◽  
George L. Allen

CORREL is a FORTRAN program that employs cross correlation to (i) determine potential cross-dating (matching) positions for "floating" (undated) ring series; (ii) detect missing or false rings; and (iii) estimate the statistical significance of potential dating positions. To work properly, CORREL input data must be detrended and modeled using the autoregressive moving average procedure. To guard against spurious dating, the output's best date should be checked for dating consistency. The significance level of the best date is obtained by adjusting its single-dating-trial significance for multiplicity (repeated dating trials). Ideally, COREL should be used with the detrending tree-ring programs ARSTAN or INDEX, and with the data quality-control program COFECHA.


2005 ◽  
Vol 35 (4) ◽  
pp. 868-876 ◽  
Author(s):  
Daniel L Druckenbrod

The detection of release events in the annual growth increments of trees has become a central and widely applied method for reconstructing the disturbance history of forests. While numerous approaches have been developed for identifying release events, the preponderance of these methods relies on running means that compare the percent change in growth rates. These methods do not explicitly account for the autocorrelation present within tree-ring width measurements and may introduce spurious events. This paper utilizes autoregressive integrated moving-average (ARIMA) processes to model tree-ring time series and incorporates intervention detection to identify pulse and step outliers as well as changes in trends indicative of a deterministic exogenous influence on past growth. This approach is evaluated by applying it to three chronologies from the Forest Responses to Anthropogenic Stress (FORAST) project that were impacted by prior disturbance events. The examples include a hemlock (Tsuga canadensis (L.) Carrière) chronology from New Hampshire, a white pine (Pinus strobus L.) chronology from Pennsylvania, and an American beech (Fagus grandifolia Ehrh.) chronology from Virginia. All three chronologies exhibit a clustering of step, pulse, and trend interventions subsequent to a known or likely disturbance event. Time-series analysis offers an alternative approach for identifying prior forest disturbances via tree rings based on statistical methods applicable across species and disturbance regimes.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Asok K. Sen ◽  
Zoltán Kern

AbstractThis study investigates the low-frequency (interannual and longer period) variability in three hydroclimatic records from east Central Europe. Two of these records consist of climate proxies derived from oak-tree rings in Bakta forest, and Balaton Highlands in Hungary, for the time interval 1783-2003. The third record consists of homogenized instrumental precipitation data from Budapest, Hungary, from 1842 to 2003. Using wavelet analysis, the three time series are analyzed and compared with one another. It is found that all three time series exhibit strong interannual variability at the 2-4 years timescales, and these variations occur intermittently throughout the length of each record. Significant variability is also observed in all the records at decadal timescales, but these variations persist for only two to three cycles. Wavelet coherence among the various time series is used to explore their time-varying correlation. The results reveal significant coherence at the 2-4 years band. At these timescales, the climatic variations are correlated to the tree-ring signal over different time intervals with changing phase. Increased (decreased) contribution of large-scale stratiform precipitation offers a potential explanation for enhanced (faded) coherence at the interannual timescale. Strong coherence was also observed occasionally at decadal timescales, however these coherences did not appear uniformly. These results reinforce the earlier assertion that neither the strength nor the rank of the similarity of the local hydroclimate signals is stable throughout the past two centuries.


2011 ◽  
Vol 59 (1) ◽  
pp. 7 ◽  
Author(s):  
Stuart Pearson ◽  
Quan Hua ◽  
Kathryn Allen ◽  
David M. J. S. Bowman

Nuclear weapons testing during the 1950s generated an atmospheric pulse of the carbon isotope, 14C. Worldwide, trees growing during that period and in subsequent decades assimilated 14C-enriched CO2, leaving a distinct isotopic signature that can be used to precisely date tree rings. Thirty single-ring samples were extracted for AMS 14C analysis from cores taken from living trees of five different Callitris species [C. endlicheri (Parl.) F.M. Bailey, C. glaucophylla Joy Thomps. & L.A.S. Johnson, C. intratropica Benth., C. preissii Miq., and C. rhomboidea R.Br. ex Rich. & A. Rich] at 13 sites. The ages of individual tree rings were determined by both 14C bomb-pulse dating and cross-dating (based on 20–30 cores from the same site) in order to (1) provide independent verification of tree-ring dates, (2) detect false or missing rings from sites with otherwise good chronologies, and (3) test whether growth rings were annual for cores from sites where cross-dating was not possible. Our approach confirmed dates on chronologies from monsoon tropical sites, provided checked chronologies in subtropical and temperate sites, and improved dating control on arid-zone ring counts. It was found that Callitris are more likely to form regular annual rings when growing in seasonally dry environments than in more arid sites with highly variable precipitation patterns.


IAWA Journal ◽  
1999 ◽  
Vol 20 (3) ◽  
pp. 249-253 ◽  
Author(s):  
David W. Stahle

This paper outlines efficient strategies for the development of long, climatically sensitive tree-ring chronologies in the tropics. Effective strategies include sampling useful temperate or subtropical species that extend naturally into the tropics; sampling species in botanical families that have already provided examples useful for dendrochronology (e. g., Pinaceae, Taxodiaceae, Verbenaceae); targeting deciduous species in seasonally dry forests; and sampling species described in the literature or found in xylaria that have promising anatomical features such as ring porosity and marginal parenchyma. Dendrochronology can also be used to test the annual nature of growth banding in tropical species. The cross-dating oflong ring-width time series between individual trees and between multiple sites in a region is strong evidence that the growth rings are indeed synchronized with the annual calendar. This can be confirmed if the ring-width data are also strongly correlated with long annual or seasonalized records of climate variability. Blind cross-dating tests to identify the cutting dates of known-age timbers can provide a final proof that a species produces reliable annual growth rings.


1994 ◽  
Vol 11 (2) ◽  
pp. 164-169
Author(s):  
J. O. Murphy ◽  
H. Sampson ◽  
T. T. Veblen ◽  
R. Villalba

AbstractFour tree ring-index site chronologies, representing standardised annual growth rates for spruce trees growing at high altitude sites in Colorado, have been employed as proxy data in a regression model for the annual variation of solar radio flux at 2800 MHz (F10·7) and the Catania sunspot area (Ac). These dendrochronological time series all exhibit significant power spectrum peaks at about 11 years and separately correlate with the annual values of Rz, F10·7 and Ac, as solar activity indicators. The two models constructed give the cyclic variation of F10·7 and Ac back to AD1673.


Sign in / Sign up

Export Citation Format

Share Document