Investigation of transfer learning for image classification and impact on training sample size

2021 ◽  
Vol 211 ◽  
pp. 104269
Author(s):  
Wenbo Zhu ◽  
Birgit Braun ◽  
Leo H. Chiang ◽  
Jose A. Romagnoli
2021 ◽  
Vol 66 (18) ◽  
pp. 185012
Author(s):  
Yingtao Fang ◽  
Jiazhou Wang ◽  
Xiaomin Ou ◽  
Hongmei Ying ◽  
Chaosu Hu ◽  
...  

2022 ◽  
Vol 13 ◽  
Author(s):  
Niklas Wulms ◽  
Lea Redmann ◽  
Christine Herpertz ◽  
Nadine Bonberg ◽  
Klaus Berger ◽  
...  

Introduction: White matter hyperintensities of presumed vascular origin (WMH) are an important magnetic resonance imaging marker of cerebral small vessel disease and are associated with cognitive decline, stroke, and mortality. Their relevance in healthy individuals, however, is less clear. This is partly due to the methodological challenge of accurately measuring rare and small WMH with automated segmentation programs. In this study, we tested whether WMH volumetry with FMRIB software library v6.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) Brain Intensity AbNormality Classification Algorithm (BIANCA), a customizable and trainable algorithm that quantifies WMH volume based on individual data training sets, can be optimized for a normal aging population.Methods: We evaluated the effect of varying training sample sizes on the accuracy and the robustness of the predicted white matter hyperintensity volume in a population (n = 201) with a low prevalence of confluent WMH and a substantial proportion of participants without WMH. BIANCA was trained with seven different sample sizes between 10 and 40 with increments of 5. For each sample size, 100 random samples of T1w and FLAIR images were drawn and trained with manually delineated masks. For validation, we defined an internal and external validation set and compared the mean absolute error, resulting from the difference between manually delineated and predicted WMH volumes for each set. For spatial overlap, we calculated the Dice similarity index (SI) for the external validation cohort.Results: The study population had a median WMH volume of 0.34 ml (IQR of 1.6 ml) and included n = 28 (18%) participants without any WMH. The mean absolute error of the difference between BIANCA prediction and manually delineated masks was minimized and became more robust with an increasing number of training participants. The lowest mean absolute error of 0.05 ml (SD of 0.24 ml) was identified in the external validation set with a training sample size of 35. Compared to the volumetric overlap, the spatial overlap was poor with an average Dice similarity index of 0.14 (SD 0.16) in the external cohort, driven by subjects with very low lesion volumes.Discussion: We found that the performance of BIANCA, particularly the robustness of predictions, could be optimized for use in populations with a low WMH load by enlargement of the training sample size. Further work is needed to evaluate and potentially improve the prediction accuracy for low lesion volumes. These findings are important for current and future population-based studies with the majority of participants being normal aging people.


2020 ◽  
pp. 107754632093379
Author(s):  
Moslem Azamfar ◽  
Jaskaran Singh ◽  
Xiang Li ◽  
Jay Lee

This study proposes a novel 1D deep convolutional transfer learning method that is able to learn the high-dimensional domain-invariant feature from the labeled training dataset and perform diagnosis tasks on the unlabeled testing dataset subjected to a domain shift. To obtain the domain-invariant features, the cross-entropy loss in the source domain classifier and the maximum mean discrepancies between the source and target domain data are minimized simultaneously. To evaluate the performance of the proposed method, an experimental study is conducted on a gearbox under significant speed variation. Because of inherent limitations of the vibration data, in this research, the effectiveness of torque measurement signals has been explored for gearbox fault diagnosis. Comprehensive studies on network parameters and the training sample size are performed to illustrate the robustness and effectiveness of the proposed method. A comparison study is performed on similar techniques to illustrate the superiority and high performance of the proposed diagnosis method. The achieved results illustrate the effectiveness of torque signal in multiclass cross-domain fault diagnosis of gearboxes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68579 ◽  
Author(s):  
Li Shao ◽  
Xiaohui Fan ◽  
Ningtao Cheng ◽  
Leihong Wu ◽  
Yiyu Cheng

Sign in / Sign up

Export Citation Format

Share Document