Cross-domain gearbox diagnostics under variable working conditions with deep convolutional transfer learning

2020 ◽  
pp. 107754632093379
Author(s):  
Moslem Azamfar ◽  
Jaskaran Singh ◽  
Xiang Li ◽  
Jay Lee

This study proposes a novel 1D deep convolutional transfer learning method that is able to learn the high-dimensional domain-invariant feature from the labeled training dataset and perform diagnosis tasks on the unlabeled testing dataset subjected to a domain shift. To obtain the domain-invariant features, the cross-entropy loss in the source domain classifier and the maximum mean discrepancies between the source and target domain data are minimized simultaneously. To evaluate the performance of the proposed method, an experimental study is conducted on a gearbox under significant speed variation. Because of inherent limitations of the vibration data, in this research, the effectiveness of torque measurement signals has been explored for gearbox fault diagnosis. Comprehensive studies on network parameters and the training sample size are performed to illustrate the robustness and effectiveness of the proposed method. A comparison study is performed on similar techniques to illustrate the superiority and high performance of the proposed diagnosis method. The achieved results illustrate the effectiveness of torque signal in multiclass cross-domain fault diagnosis of gearboxes.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 450
Author(s):  
Xudong Li ◽  
Jianhua Zheng ◽  
Mingtao Li ◽  
Wenzhen Ma ◽  
Yang Hu

In recent years, transfer learning has been widely applied in fault diagnosis for solving the problem of inconsistent distribution of the original training dataset and the online-collecting testing dataset. In particular, the domain adaptation method can solve the problem of the unlabeled testing dataset in transfer learning. Moreover, Convolutional Neural Network (CNN) is the most widely used network among existing domain adaptation approaches due to its powerful feature extraction capability. However, network designing is too empirical, and there is no network designing principle from the frequency domain. In this paper, we propose a unified convolutional neural network architecture from a frequency domain perspective for a domain adaptation named Frequency-domain Fusing Convolutional Neural Network (FFCNN). The method of FFCNN contains two parts, frequency-domain fusing layer and feature extractor. The frequency-domain fusing layer uses convolution operations to filter signals at different frequency bands and combines them into new input signals. These signals are input to the feature extractor to extract features and make domain adaptation. We apply FFCNN for three domain adaptation methods, and the diagnosis accuracy is improved compared to the typical CNN.


Author(s):  
Jiantong Zhao ◽  
Wentao Huang

Abstract In practical bearing fault diagnosis tasks, the available labelled data are often not from the equipment to be diagnosed and cannot cover all manner of working conditions. The adopted data-driven method is required to have a certain degree of cross-domain and cross-working condition transfer learning diagnosis ability. However, limited by the performance of existing transfer learning methods, the potential difference between the source domain and the target domain poses a challenge for the accuracy of transfer diagnosis. In this paper, a cross-working condition data supplement method based on the cycle generative adversarial network (CycleGAN) and a dynamics model is proposed, which can use limited available data to approximate the missing parts of existing data and be used for diagnosis of the target domain. First, we considered the limited experimental data as the target domain, the simulation data corresponding to the working condition as the source domain and used the working condition as the benchmark to constrain the data correspondence between the two datasets. We then used the CycleGAN model to learn the feature mapping from simulation to experiment. Second, based on the working condition of the data to be tested, the corresponding simulation data were input into the trained generator to obtain labeled data with experimental characteristics under the corresponding working conditions, and transferred the dataset as the source domain data to the data to be tested. In the test using self-made simulation and experimental datasets, combined with the transfer learning method based on the probability distribution adaptation, it was shown that the proposed method could effectively improve the diagnostic impact of the single transfer learning method in cross-domain and cross-working conditions when the working condition span was large.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


Author(s):  
Shu Jiang ◽  
Zuchao Li ◽  
Hai Zhao ◽  
Bao-Liang Lu ◽  
Rui Wang

In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific (in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers that perform well on the in-domain data usually suffer from significant performance degradation on the out-of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-domain transfer learning. Specifically, we adopt a pre-trained language model BERT for training on the source domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show the potential of self-learning to cross-lingual transfer learning.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 320 ◽  
Author(s):  
Xiaodong Wang ◽  
Feng Liu

Recently, deep learning methods are becomingincreasingly popular in the field of fault diagnosis and achieve great success. However, since the rotation speeds and load conditions of rotating machines are subject to change during operations, the distribution of labeled training dataset for intelligent fault diagnosis model is different from the distribution of unlabeled testing dataset, where domain shift occurs. The performance of the fault diagnosis may significantly degrade due to this domain shift problem. Unsupervised domain adaptation has been proposed to alleviate this problem by aligning the distribution between labeled source domain and unlabeled target domain. In this paper, we propose triplet loss guided adversarial domain adaptation method (TLADA) for bearing fault diagnosis by jointly aligning the data-level and class-level distribution. Data-level alignment is achieved using Wasserstein distance-based adversarial approach, and the discrepancy of distributions in feature space is further minimized at class level by the triplet loss. Unlike other center loss-based class-level alignment approaches, which hasto compute the class centers for each class and minimize the distance of same class center from different domain, the proposed TLADA method concatenates 2 mini-batches from source and target domain into a single mini-batch and imposes triplet loss to the whole mini-batch ignoring the domains. Therefore, the overhead of updating the class center is eliminated. The effectiveness of the proposed method is validated on CWRU dataset and Paderborn dataset through extensive transfer fault diagnosis experiments.


Author(s):  
Jialin Li ◽  
Xueyi Li ◽  
David He ◽  
Yongzhi Qu

In recent years, research on gear pitting fault diagnosis has been conducted. Most of the research has focused on feature extraction and feature selection process, and diagnostic models are only suitable for one working condition. To diagnose early gear pitting faults under multiple working conditions, this article proposes to develop a domain adaptation diagnostic model–based improved deep neural network and transfer learning with raw vibration signals. A particle swarm optimization algorithm and L2 regularization are used to optimize the improved deep neural network to improve the stability and accuracy of the diagnosis. When using the domain adaptation diagnostic model for fault diagnosis, it is necessary to discriminate whether the target domain (test data) is the same as the source domain (training data). If the target domain and the source domain are consistent, the trained improved deep neural network can be used directly for diagnosis. Otherwise, the transfer learning is combined with improved deep neural network to develop a deep transfer learning network to improve the domain adaptability of the diagnostic model. Vibration signals for seven gear types with early pitting faults under 25 working conditions collected from a gear test rig are used to validate the proposed method. It is confirmed by the validation results that the developed domain adaptation diagnostic model has a significant improvement in the adaptability of multiple working conditions.


Author(s):  
Yang Zhang ◽  
Siwa Chan ◽  
Jeon-Hor Chen ◽  
Kai-Ting Chang ◽  
Chin-Yao Lin ◽  
...  

AbstractTo develop a U-net deep learning method for breast tissue segmentation on fat-sat T1-weighted (T1W) MRI using transfer learning (TL) from a model developed for non-fat-sat images. The training dataset (N = 126) was imaged on a 1.5 T MR scanner, and the independent testing dataset (N = 40) was imaged on a 3 T scanner, both using fat-sat T1W pulse sequence. Pre-contrast images acquired in the dynamic-contrast-enhanced (DCE) MRI sequence were used for analysis. All patients had unilateral cancer, and the segmentation was performed using the contralateral normal breast. The ground truth of breast and fibroglandular tissue (FGT) segmentation was generated using a template-based segmentation method with a clustering algorithm. The deep learning segmentation was performed using U-net models trained with and without TL, by using initial values of trainable parameters taken from the previous model for non-fat-sat images. The ground truth of each case was used to evaluate the segmentation performance of the U-net models by calculating the dice similarity coefficient (DSC) and the overall accuracy based on all pixels. Pearson’s correlation was used to evaluate the correlation of breast volume and FGT volume between the U-net prediction output and the ground truth. In the training dataset, the evaluation was performed using tenfold cross-validation, and the mean DSC with and without TL was 0.97 vs. 0.95 for breast and 0.86 vs. 0.80 for FGT. When the final model developed with and without TL from the training dataset was applied to the testing dataset, the mean DSC was 0.89 vs. 0.83 for breast and 0.81 vs. 0.81 for FGT, respectively. Application of TL not only improved the DSC, but also decreased the required training case number. Lastly, there was a high correlation (R2 > 0.90) for both the training and testing datasets between the U-net prediction output and ground truth for breast volume and FGT volume. U-net can be applied to perform breast tissue segmentation on fat-sat images, and TL is an efficient strategy to develop a specific model for each different dataset.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael Franco-Garcia ◽  
Alex Benasutti ◽  
Larry Pearlstein ◽  
Mohammed Alabsi

Intelligent fault diagnosis utilizing deep learning algorithms has been widely investigated recently. Although previous results demonstrated excellent performance, features learned by Deep Neural Networks (DNN) are part of a large black box. Consequently, lack of understanding of underlying physical meanings embedded within the features can lead to poor performance when applied to different but related datasets i.e. transfer learning applications. This study will investigate the transfer learning performance of a Convolution Neural Network (CNN) considering 4 different operating conditions. Utilizing the Case Western Reserve University (CWRU) bearing dataset, the CNN will be trained to classify 12 classes. Each class represents a unique differentfault scenario with varying severity i.e. inner race fault of 0.007”, 0.014” diameter. Initially, zero load data will be utilized for model training and the model will be tuned until testing accuracy above 99% is obtained. The model performance will be evaluated by feeding vibration data collected when the load is varied to 1, 2 and 3 HP. Initial results indicated that the classification accuracy will degrade substantially. Hence, this paper will visualize convolution kernels in time and frequency domains and will investigate the influence of changing loads on fault characteristics, network classification mechanism and activation strength.


Sign in / Sign up

Export Citation Format

Share Document