Efficient removal of dyes from aqueous solutions using a novel hemoglobin/iron oxide composite

Chemosphere ◽  
2018 ◽  
Vol 206 ◽  
pp. 502-512 ◽  
Author(s):  
Matthew Essandoh ◽  
Rafael A. Garcia
2014 ◽  
Vol 353 ◽  
pp. 33-38
Author(s):  
Rafique Ullah ◽  
Biplob Kumer Deb ◽  
Mohammad Yousuf Ali Mollah

Chromium (VI) is known to be carcinogenic to humans and thus it is important to ensure the removal of Chromium (VI) from aqueous solutions and industrial effluents. The present study introduces a good alternative method for Cr (VI) removal from aqueous solutions at ambient temperature by adsorption, allowing the development of newer, lower operational cost, and more efficient technology than other processes already in use. Adsorption was found to be dependent on pH and initial concentration of Cr (VI) solution. Results of adsorption studies suggest that pristine iron oxide and silicon (IV) oxide removes 72.10% and 24.73%, respectively. The iron oxide – silicon (IV) oxide composite, prepared in this work, removes 93.88% Cr (VI) in 20 minutes from aqueous solution at an initial concentration of 50 mgL-1at pH 4.8 ± 0.2. The effect of concentration, contact time, adsorbent dose and solution pH on the adsorption of Cr (VI) were studied in detail in batch experiments. Studies of the sorption kinetics shows that equilibrium adsorption was attained in 20 minutes depending on other experimental conditions. The kinetic data justified Lagergren’s first-order kinetic equation. Adsorption isotherm study showed that the results fulfilled the Langmuir Model of adsorption isotherm. The maximum adsorption (98.28%) was recorded at pH 3 in 90 minutes for the initial Cr (VI) concentration of 50 mg L-1. Therefore, it can be concluded that iron oxide – silicon (IV) oxide composite is a potential adsorbent for adsorption of Cr (VI) from aqueous solution.


2005 ◽  
Vol 293 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Takuya Kinoshita ◽  
Satoshi Seino ◽  
Yoshiteru Mizukoshi ◽  
Yohei Otome ◽  
Takashi Nakagawa ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3725-3731
Author(s):  
Juan Huang ◽  
Weirong Cui ◽  
Ruping Liang ◽  
Li Zhang ◽  
Jianding Qiu

Novel porous BMTTPA–CS–GO nanocomposites are prepared by covalently grafting BMTTPA–CS onto GO surfaces, and used for efficient removal of heavy metal ions from polluted water.


Sign in / Sign up

Export Citation Format

Share Document