Enhancing microalgae growth and product accumulation with carbon source regulation: New perspective for the coordination between photosynthesis and aerobic respiration

Chemosphere ◽  
2021 ◽  
pp. 130435
Author(s):  
Pengtao Gao ◽  
Liang Guo ◽  
Yangguo Zhao ◽  
Chunji Jin ◽  
Zonglian She ◽  
...  
2003 ◽  
Vol 48 (6) ◽  
pp. 119-124 ◽  
Author(s):  
C. Estrada-Vázquez ◽  
H. Macarie ◽  
M.T. Kato ◽  
R. Rodríguez-Vázquez ◽  
F. Esparza-García ◽  
...  

Anaerobic methanogenic consortia have a considerable resistance to oxygen exposure. Yet, most research has been focused on the study of the tolerance to oxygen of anaerobic immobilized biomass. Less is known on the potential of the anaerobic suspended biomass for withstanding exposure to oxygen and the effect of a primary degradable substrate on such resistance. Thus, the objective of this work was to determine the effect of the amount of a primary degradable substrate (sucrose) on the resistance of a methanogenic suspended biomass to oxygen exposure. It was found that the inhibition of disperse anaerobic sludge by oxygen exposure decreases when the concentration of the supplemented carbon source increases. This is in agreement with the fact that aerobic respiration of the added substrate by the facultative heterotrophic bacteria, always present in this type of sludge, has been found in previous studies as one of the main mechanisms protecting methanogens against O2. From a practical point of view, this suggests that aeration of anaerobic systems should be possible without inhibiting the activity of methanogenic bacteria if an adequate ratio between oxygen and COD feeding is maintained. Such a ratio will depend however on the wastewater initial COD concentration.


Author(s):  
Irene Krahn ◽  
Daniel Bonder ◽  
Lucía Torregrosa-Barragán ◽  
Dominik Stoppel ◽  
Jens P. Krause ◽  
...  

Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Yang ◽  
Lu Meng ◽  
Xue Lin ◽  
Huan-Yuan Jiang ◽  
Xiao-Ping Hu ◽  
...  

Glucose repression is a key regulatory system controlling the metabolism of non-glucose carbon source in yeast. Glucose represses the utilization of maltose, the most abundant fermentable sugar in lean dough and wort, thereby negatively affecting the fermentation efficiency and product quality of pasta products and beer. In this study, the focus was on the role of three kinases, Elm1, Tos3, and Sak1, in the maltose metabolism of baker’s yeast in lean dough. The results suggested that the three kinases played different roles in the regulation of the maltose metabolism of baker’s yeast with differential regulations on MAL genes. Elm1 was necessary for the maltose metabolism of baker’s yeast in maltose and maltose-glucose, and the overexpression of ELM1 could enhance the maltose metabolism and lean dough fermentation ability by upregulating the transcription of MALx1 (x is the locus) in maltose and maltose-glucose and MALx2 in maltose. The native level of TOS3 and SAK1 was essential for yeast cells to adapt glucose repression, but the overexpression of TOS3 and SAK1 alone repressed the expression of MALx1 in maltose-glucose and MALx2 in maltose. Moreover, the three kinases might regulate the maltose metabolism via the Snf1-parallel pathways with a carbon source-dependent manner. These results, for the first time, suggested that Elm1, rather than Tos3 and Sak1, might be the dominant regulator in the maltose metabolism of baker’s yeast. These findings provided knowledge about the glucose repression of maltose and gave a new perspective for breeding industrial yeasts with rapid maltose metabolism.


2021 ◽  
Author(s):  
Irene Krahn ◽  
Daniel Bonder ◽  
Lucia Torregrosa ◽  
Dominik Stoppel ◽  
Jens P. Krause ◽  
...  

AbstractFructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (~10 %) compared to glucose (~60 %). Consequently, the biosynthesis of NADPH demanding products, e.g. L-lysine, by C. glutamicum is largely decreased, when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and consequently NADPH availability. Here, we generated deletion strains either lacking in the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose specific PTS, as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased biomass formation, reduced side-product accumulation, and increased L-lysine production by 50 %.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


1979 ◽  
Vol 10 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Sallie W. Hillard ◽  
Laura P. Goepfert

This paper describes the concept of teaching articulation through words which have inherent meaning to a child’s life experience, such as a semantically potent word approach. The approach was used with six children. Comparison of pre/post remediation measures indicated that it has promise as a technique for facilitating increased correct phoneme production.


Sign in / Sign up

Export Citation Format

Share Document