product accumulation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 2)

ChemSusChem ◽  
2021 ◽  
Author(s):  
Erika Erickson ◽  
Thomas J. Shakespeare ◽  
Felicia Bratti ◽  
Bonnie L. Buss ◽  
Rosie Graham ◽  
...  

ChemSusChem ◽  
2021 ◽  
Author(s):  
Erika Erickson ◽  
Thomas J. Shakespeare ◽  
Felicia Bratti ◽  
Bonnie L. Buss ◽  
Rosie Graham ◽  
...  

2021 ◽  
Author(s):  
S. Sivasaravanababu ◽  
T.R. Dineshkumar ◽  
G. Saravana Kumar

The Multiply-Accumulate Unit (MAC) is the core computational block in many DSP and wireless application but comes with more complicated architectures. Moreover the MAC block also decides the energy consumption and the performance of the overall design; due to its lies in the maximal path delay critical propagation. Developing high performance and energy optimized MAC core is essential to optimized DSP core. In this work, a high speed and low power signed booth radix enabled MAC Unit is proposed with highly configurable assertion driven modified booth algorithm (AD-MBE). The proposed booth core is based on core optimized booth radix-4 with hierarchical partial product accumulation design and associated path delay optimization and computational complexity reduction. Here all booth generated partial products are added as post summation adder network which consists of carry select adder (CSA) & carry look ahead (CLA) sequentially which narrow down the energy and computational complexity. Here increasing the operating frequency is achieved by accumulating encoding bits of each of the input operand into assertion unit before generating end results instead of going through the entire partial product accumulation. The FPGA implementation of the proposed signed asserted booth radix-4 based MAC shows significant complexity reduction with improved system performance as compared to the conventional booth unit and conventional array multiplier.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Erika Erickson ◽  
Thomas J Shakespeare ◽  
Felicia Bratti ◽  
Bonnie L Buss ◽  
Rosie Graham ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5517
Author(s):  
Jinzhen Huang ◽  
Yangyang Zhu ◽  
Yuwei Ma ◽  
Jie Hu ◽  
Haoliang Huang ◽  
...  

The smart release of healing agents is a key factor determining the inhibition efficiency of microcapsules-based corrosion inhibitors for reinforced concrete. In this study, the release behavior of benzotriazole (BTA) in microcapsule-based inhibitors was investigated in mortar sample to clarify the influence of different hydration products on the release process. The results indicated that under high pH environment (pH > 12.4), only about 5% reserved BTA was released from the mortar sample. pH drop resulted in the increased release of BTA from mortar sample. Most BTA in the microcapsule-based inhibitors was released from mortar sample in low pH environment, which was closely related to morphology/composition alterations of hydration products caused by pH drop of the environment. The smart release of BTA dramatically delayed corrosion initiation of reinforced mortar and halted corrosion product accumulation on the steel surface. Therefore, the corrosion resistance of the reinforced mortar was improved after corrosion initiation.


Author(s):  
Irene Krahn ◽  
Daniel Bonder ◽  
Lucía Torregrosa-Barragán ◽  
Dominik Stoppel ◽  
Jens P. Krause ◽  
...  

Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.


2021 ◽  
Author(s):  
Irene Krahn ◽  
Daniel Bonder ◽  
Lucia Torregrosa ◽  
Dominik Stoppel ◽  
Jens P. Krause ◽  
...  

AbstractFructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (~10 %) compared to glucose (~60 %). Consequently, the biosynthesis of NADPH demanding products, e.g. L-lysine, by C. glutamicum is largely decreased, when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and consequently NADPH availability. Here, we generated deletion strains either lacking in the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose specific PTS, as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased biomass formation, reduced side-product accumulation, and increased L-lysine production by 50 %.


2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Thomas Schalck ◽  
Bram Van den Bergh ◽  
Jan Michiels

Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.


Sign in / Sign up

Export Citation Format

Share Document