Life cycle analysis of coal-based synthetic natural gas for heat supply and electricity generation in China

2018 ◽  
Vol 131 ◽  
pp. 709-722 ◽  
Author(s):  
Dan Gao ◽  
Xu Qiu ◽  
Xianghao Zheng ◽  
Yuning Zhang
2019 ◽  
Author(s):  
James Littlefield ◽  
Selina Roman-White ◽  
Dan Augustine ◽  
Ambica Pegallapati ◽  
George G. Zaimes ◽  
...  

Author(s):  
Ahmad Al‐Douri ◽  
Abdulrahman S. Alsuhaibani ◽  
Margaux Moore ◽  
Rasmus Bach Nielsen ◽  
Amro A. El‐Baz ◽  
...  

2018 ◽  
Vol 29 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Binita Shah ◽  
Seema Unnikrishnan

Purpose India is a developing economy along with an increasing population estimated to be the largest populated country in about seven years. Simultaneously, its power consumption is projected to increase more than double by 2020. Currently, the dependence on coal is relatively high, making it the largest global greenhouse gas emitting sector which is a matter of great concern. The purpose of this paper is to evaluate the environmental impacts of the natural gas electricity generation in India and propose a model using a life cycle assessment (LCA) approach. Design/methodology/approach LCA is used as a tool to evaluate the environmental impact of the natural gas combined cycle (NGCC) power plant, as it adopts a holistic approach towards the whole process. The LCA methodology used in this study follows the ISO 14040 and 14044 standards (ISO 14040: 2009; ISO 14044: 2009). A questionnaire was designed for data collection and validated by expert review primary data for the annual environmental emission was collected by personally visiting the power plant. The study follows a cradle to gate assessment using the CML (2001) methodology. Findings The analysis reveals that the main impacts were during the process of combustion. The Global warming potential is approximately 0.50 kg CO2 equivalents per kWh of electricity generation from this gas-based power plant. These results can be used by stakeholders, experts and members who are authorised to probe positive initiative for the reduction of environmental impacts from the power generation sector. Practical implications Considering the pace of growth of economic development of India, it is the need of the hour to emphasise on the patterns of sustainable energy generation which is an important subject to be addressed considering India’s ratification to the Paris Climate Change Agreement. This paper analyzes the environmental impacts of gas-based electricity generation. Originality/value Presenting this case study is an opportunity to get a glimpse of the challenges associated with gas-based electricity generation in India. It gives a direction and helps us to better understand the right spot which require efforts for the improvement of sustainable energy generation processes, by taking appropriate measures for emission reduction. This paper also proposes a model for gas-based electricity generation in India. It has been developed following an LCA approach. As far as we aware, this is the first study which proposes an LCA model for gas-based electricity generation in India. The model is developed in line with the LCA methodology and focusses on the impact categories specific for gas-based electricity generation.


2015 ◽  
Author(s):  
Alysson Domingos Silvestre ◽  
Filipi Maciel ◽  
José Maurício Alves de Matos Gurgel ◽  
Monica Carvalho

Author(s):  
Roberts Kaķis ◽  
Dagnija Blumberga ◽  
Ģirts Vīgants

The article deals with the problem facing Latvian inventors in how to develop the idea to a real product. There are often cases where innovative ideas “migrate” from original inventors to other inventors, when they turn to them to seek support for developing and supporting the idea. The main components of the guidelines are the establishment of a patent application and, in general, a description of the entire patent acquisition process and the creation of a life cycle analysis using the SimaPro software. The article is intended primarily for the development of environmentally friendly inventions, which is why the life cycle analysis is one of the main components of the article, to make it possible to conclude whether the production and use of the new product will not result in a higher “ecological footprint” than previously used technologies, paying particular attention to the inventor stage in order to accurately develop a life-cycle analysis. The article does not only explore the necessary theoretical knowledge of the realisation of the idea to the product, but also looks at the pilot case, a practical example of an innovative “dust co-firing burner” compared to the conventional natural gas burner. The life-cycle analysis compares the following steps: manufacture of plants, transportation of plants and special emphasis on the combustion phase of fuels, three scenarios are examined: a natural gas burner burning natural gas, a dust burner in which natural gas is co-incinerated and fine wood particles − dust and a dust burner burning. biomethane and wood dust. The use of such an installation would not only reduce emissions from the replacement of natural gas by wood dust, but also allow energy companies to work more effectively, as it would be possible to regulate the proportion of different fuels depending on demand, because the fuels have different heat of combustion. The article establishes a methodology to analyse the quality and implementation of inventions in response to the following key questions: − how to identify original ideas and how to protect authors from the migration of ideas; − how to collect and analyse the risks associated with migration of ideas; − how to use life cycle analysis for the assessment of the “ecological footprint” of the invention.


2012 ◽  
Author(s):  
C.E. Clark ◽  
J. Han ◽  
A. Burnham ◽  
J.B. Dunn ◽  
M. Wang

Sign in / Sign up

Export Citation Format

Share Document