Sustainability assessment of gas based power generation using a life cycle assessment approach

2018 ◽  
Vol 29 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Binita Shah ◽  
Seema Unnikrishnan

Purpose India is a developing economy along with an increasing population estimated to be the largest populated country in about seven years. Simultaneously, its power consumption is projected to increase more than double by 2020. Currently, the dependence on coal is relatively high, making it the largest global greenhouse gas emitting sector which is a matter of great concern. The purpose of this paper is to evaluate the environmental impacts of the natural gas electricity generation in India and propose a model using a life cycle assessment (LCA) approach. Design/methodology/approach LCA is used as a tool to evaluate the environmental impact of the natural gas combined cycle (NGCC) power plant, as it adopts a holistic approach towards the whole process. The LCA methodology used in this study follows the ISO 14040 and 14044 standards (ISO 14040: 2009; ISO 14044: 2009). A questionnaire was designed for data collection and validated by expert review primary data for the annual environmental emission was collected by personally visiting the power plant. The study follows a cradle to gate assessment using the CML (2001) methodology. Findings The analysis reveals that the main impacts were during the process of combustion. The Global warming potential is approximately 0.50 kg CO2 equivalents per kWh of electricity generation from this gas-based power plant. These results can be used by stakeholders, experts and members who are authorised to probe positive initiative for the reduction of environmental impacts from the power generation sector. Practical implications Considering the pace of growth of economic development of India, it is the need of the hour to emphasise on the patterns of sustainable energy generation which is an important subject to be addressed considering India’s ratification to the Paris Climate Change Agreement. This paper analyzes the environmental impacts of gas-based electricity generation. Originality/value Presenting this case study is an opportunity to get a glimpse of the challenges associated with gas-based electricity generation in India. It gives a direction and helps us to better understand the right spot which require efforts for the improvement of sustainable energy generation processes, by taking appropriate measures for emission reduction. This paper also proposes a model for gas-based electricity generation in India. It has been developed following an LCA approach. As far as we aware, this is the first study which proposes an LCA model for gas-based electricity generation in India. The model is developed in line with the LCA methodology and focusses on the impact categories specific for gas-based electricity generation.

2013 ◽  
Vol 864-867 ◽  
pp. 1132-1138
Author(s):  
C. Hafizan ◽  
Zainura Z. Noor ◽  
F. L Michael

Nowadays, sustainability is one of the main driving forces for worldwide economic growth especially in energy production. Conbustion of fuel such as natural gas for energy production not only produce electricity but also impacts to environment. In order to assess the environmental impacts of the natural gas power plant, study of life cycle assessment (LCA) has been carried out based on the data obtained from natural gas (NG) power plant in Johor, Malaysia. Data validation has been done by comparing the result with other assessment using the data available in the database. This paper presents the results of the LCA. From this study, it was found that there are insignificant differences in terms of the potential environmental impacts between the LCA study conducted using the data from the NG power with the assessment conducted using data from the database.KeywordsLife cycle assessment, sustainability, energy, natural gas


2020 ◽  
Vol 8 (9) ◽  
pp. 660
Author(s):  
Sang Soo Hwang ◽  
Sung Jin Gil ◽  
Gang Nam Lee ◽  
Ji Won Lee ◽  
Hyun Park ◽  
...  

In this study, the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO), natural gas, and hydrogen with various energy sources for a 12,000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK, i.e., MGO from Saudi Arabia and natural gas from Qatar, these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal, nuclear energy, renewable energy, and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-to- Tank, Tank-to-Wake, and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP), acidification potential (AP), photochemical potential (POCP), eutrophication potential (EP), and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover, it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small, nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.


Author(s):  
Daniele Landi ◽  
Leonardo Postacchini ◽  
Paolo Cicconi ◽  
Filippo E. Ciarapica ◽  
Michele Germani

In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.


Author(s):  
Sate Sampattagul ◽  
Seizo Kato ◽  
Tanongkiat Kiatsiriroat ◽  
Naoki Maruyama ◽  
Akira Nishimura

To achieve a sustainable power generation industry it is necessary to study the environmental impacts and economic costs of all aspects of a power generation plants’ lifecycle - from mining to electricity distribution, and, ultimately, decommission (from cradle to grave). One key component in improving and maintaining quality of life for consumers is the application of the Green Productivity Index (GPI) in order to evaluate the related factors of Life Cycle Assessment (LCA) and Life Cycle Costing (LCC). The goal of this research is to appraise the efficacy of decision-making tools in accurately assessing the potential results of ‘green’ improvements to coal-fired and natural gas-fired power plants in both ecological and economic terms. The recently developed Numerical Eco-load Total Standardization (LCA-NETS) evaluates environmental impacts by identifying and quantifying input energy and output waste released to the environment throughout the life cycle of a power plant. Environmental impacts caused by global and regional environmental issues are numerically calculated in the units of NETS. Environmental assessment tools such as LCA, LCC and GPI can be used to improve the ‘environmental friendliness’ of electricity generation by demonstrating the future sustainability of ‘green’ power generation plants and their contribution to the quality of life of consumer.


2017 ◽  
Vol 15 (2) ◽  
pp. e0204 ◽  
Author(s):  
Ehsan Houshyar

Current intensive grain crops production is often associated with environmental burdens. However, very few studies deal with the environmental performance of both current and alternative systems of barley production. This study was undertaken to evaluate energy consumption and environmental impacts of irrigated and rain-fed barley production. Additionally, three alternative scenarios were examined for irrigated barley fields including conservation tillage and biomass utilization policies. The findings showed that around 25 GJ/ha energy is needed in order to produce 2300 kg/ha irrigated barley and 13 GJ/ha for 1100 kg/ha rain-fed barley. Life cycle assessment (LCA) results indicated that irrigated farms had more environmental impacts than rain-fed farms. Electricity generation and consumption had the highest effect on the abiotic depletion potential, human toxicity potential, freshwater and marine aquatic ecotoxicity potential. However, alternative scenarios revealed that using soil conservation tillage systems and biomass consumption vs. gas for electricity generation at power plants can significantly mitigate environmental impacts of irrigated barley production similar to the rain-fed conditions while higher yield is obtained.


Sign in / Sign up

Export Citation Format

Share Document