Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength

2019 ◽  
Vol 142 ◽  
pp. 214-224 ◽  
Author(s):  
Donghai Yang ◽  
Yongxiang Sun ◽  
Limin He ◽  
Xiaoming Luo ◽  
Yuling Lü ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1733
Author(s):  
Yi Shi ◽  
Jiaqing Chen ◽  
Zehao Pan

As most of the light and easy oil fields have been produced or are nearing their end-life, the emulsion stability is enhanced and water cut is increasing in produced fluid which have brought challenges to oil–water separation in onshore and offshore production trains. The conventional solution to these challenges includes a combination of higher chemical dosages, larger vessels and more separation stages, which often demands increased energy consumption, higher operating costs and larger space for the production facility. It is not always feasible to address the issues by conventional means, especially for the separation process on offshore platforms. Electrostatic coalescence is an effective method to achieve demulsification and accelerate the oil–water separation process. In this paper, a novel compact electrostatic coalescer with helical electrodes was developed and its performance on treatment of water-in-oil emulsions was investigated by experiments. Focused beam reflectance measurement (FBRM) was used to make real-time online measurements of water droplet sizes in the emulsion. The average water droplet diameters and number of droplets within a certain size range are set as indicators for evaluating the effect of coalescence. We investigated the effect of electric field strength, frequency, water content and fluid velocity on the performance of coalescence. The experimental results showed that increasing the electric field strength could obviously contribute to the growth of small water droplets and coalescence. The extreme value of electric field strength achieved in the high-frequency electric field was much higher than that in the power-frequency (50 Hz) electric field, which can better promote the growth of water droplets. The initial average diameters of water droplets increase with higher water content. The rate of increment in the electric field was also increased. Its performance was compared with that of the plate electrodes to further verify the advantages of enhancing electrostatic coalescence and demulsification with helical electrodes. The research results can provide guidance for the optimization and performance improvement of a compact electrocoalescer.


Langmuir ◽  
2020 ◽  
Vol 36 (21) ◽  
pp. 6051-6060 ◽  
Author(s):  
Vikky Anand ◽  
Vinay A. Juvekar ◽  
Rochish M. Thaokar

2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


Sign in / Sign up

Export Citation Format

Share Document