Effect of external magnetic field on lane formation in driven pair-ion plasmas

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.

1967 ◽  
Vol 22 (12) ◽  
pp. 1890-1903
Author(s):  
F. Karger

In a previous paper31 discrepancies between theory and experiment were found on investigating the positive column in a curved magnetic field. The approximation derived in 31 for the torus drift in a weakly ionized magnetoplasma is therefore checked here (Part I) with a refined theory which also yields the transverse electric field strength. Experimentally, both the transverse electric fields and the density profiles in the DC discharge were determined in addition to the longitudinal electric field strength.The discrepancies occurring in 31 are ascribed to the fact that the plasma concentrates at the cathode end of the magnetic field coils, this effect having a considerable influence on the form of the transverse density profile and on the stability behaviour. Part II later will show how the influence of this concentration can be eliminated and what effect in the current-carrying toroidal plasma causes a marked reduction of the charge carrier losses.


2017 ◽  
Vol 66 (3) ◽  
pp. 595-605 ◽  
Author(s):  
Ramūnas Deltuva ◽  
Robertas Lukočius

AbstractIn Lithuanian and Polish electric power supply systems, the power transmission lines of 400 kV voltage represent one of the most potential sources of electric and magnetic fields generation. The 400 kV double-circuit overhead power transmission line and its surrounding environment were herby described and simulated through Finite Element Method usingCOMSOL Multiphysicsoftware package. This study includes magnetic and electric field calculations. The study shows that the values of magnetic field strength and electric field strength present in the vicinity of a 400 kV overhead power transmission line tend to exceed limit values established in the Normative. Measurements are suggested to be taken for the purpose of finding maximum values of magnetic and electric field strength. To reduce these values, it is recommended to increase the height of supports, and restrict human personal and economic activities.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3635
Author(s):  
Junqing Lan ◽  
Akimasa Hirata

This study computationally evaluates the effect of loudspeakers on the in situ electric field in a driver body model exposed to the magnetic field from a wireless power transfer (WPT) system in an electric vehicle (EV), one with a body made of carbon fiber reinforced plastic (CFRP) and the other made with aluminum. A quasi-static two-step approach was applied to compute the in situ electric field. The computational results showed that the magnetic field distribution generated by the WPT is significantly altered around the loudspeakers, and shows obvious discontinuity and local enhancement. The maximum spatial-average magnetic field strength in the driver’s body was increased by 11% in the CFRP vehicle. It was 2.25 times larger than the reference levels (RL) prescribed in the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines in 2010. In addition, we found that the in situ electric field computed by the line- and volume-averaging methods were stable if the top 0.1% voxels are excluded. The maximum value was well below the basic restriction (BR) of the ICNIRP guidelines. Nevertheless, the presence of the loudspeaker led to increments in the electric field strength in parts of the human body, suggesting the potential influence of permissible transmitting power in the WPT system. The maximum electric field strength in the thigh and buttock with the woofer, increased by 27% in the CFRP vehicle. The arm value was up to 3 times higher than that obtained without the tweeter in the aluminum vehicle. Moreover, this study found that the maximum electric field strength depended on the location of the loudspeaker with respect to the WPT system and the separation from the driver model. Therefore, the loudspeaker should be considered when evaluating the maximum in situ electric field strength in the vehicle body design stage.


1967 ◽  
Vol 22 (7) ◽  
pp. 1039-1057
Author(s):  
F. Karger

For the particle losses of a weakly ionized plasma which result from the torus drift in a curved magnetic field, an expression is derived which is valid for certain parameters of the positive column of a gas discharge. To check this theory the “AMBIPOL” device was built. With this device it was possible to determine simultaneously the losses both in the toroidal and in the linear magnetic field by measuring the longitudinal electric field strength. As theory predicts, with growing magnetic field strength a weaker decrease of the longitudinal electric field was observed in the toroidal part of the discharge as compared to the linear part. The measured values of the relative electric field strength, however, exceed the theoretical limit, although the measurements of the electric field in the straight part and the measurements of the particle density and of the electron temperature in the curved part are consistent with theory. Moreover, contrary to the expectations, the onset of the KADOMTSEV instability occurs at lower critical magnetic fields in the toroidal part than in the straight part. Several possible explanations are discussed. In a later paper it will be attempted to make a choice among the three most probable ones.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Debarun Das ◽  
Marwan F. Al-Rjoub ◽  
Rupak K. Banerjee

Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150–450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150–200 V/cm) and from 35% to 47.5% for higher electric fields (400–450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development of portable device for detection of target cells, pathogens, and biomolecules.


2017 ◽  
Vol 15 ◽  
pp. 243-248
Author(s):  
Reiner Pape ◽  
Uwe Karsten ◽  
Frank-Michael Lindner ◽  
Frank Rittmann ◽  
Joachim von Freeden ◽  
...  

Abstract. In this paper we discuss the results of an intercomparison for electric field strength measurements within the German Calibration Service (Deutscher Kalibrierdienst – DKD). The comparison has been carried out on the field strength value required to reach a display reading of 20 V m−1 of the field probes for frequencies between 100 MHz and 18 GHz. Five laboratories joined the intercomparison including the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute that keeps the primary standard for electric field strength. As measurement artefacts both a small 1-axis probe usually used as transfer sensor at PTB and a larger 3-axis commercial field probe have been used. While the results agree well for the small field probe and when the larger commercial 3-axis field probe is oriented in the direction of the magnetic field, larger deviations occur, when the larger 3-axis field probe is oriented into the direction of the Poynting vector of the calibration field.


2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

Sign in / Sign up

Export Citation Format

Share Document