Catalytic Deoxygenation of Palm Oil and its Residue in Green Diesel Production: a Current Technological Review

Author(s):  
Hilman Ibnu Mahdi ◽  
Alireza Bazargan ◽  
Gordon McKay ◽  
Nur Izyan Wan Azelee ◽  
Lucas Meili
Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 747
Author(s):  
Sanaa Hafeez ◽  
Sultan M Al-Salem ◽  
Kyriakos N Papageridis ◽  
Nikolaos D Charisiou ◽  
Maria A Goula ◽  
...  

For the first time, a fully comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to predict the selective catalytic deoxygenation of palm oil to produce green diesel over an Ni/ZrO2 catalyst. The modelling results were compared to experimental data, and a very good validation was obtained. It was found that for the Ni/ZrO2 catalyst, the paraffin conversion increased with temperature, reaching a maximum value (>95%) at 300 °C. However, temperatures greater than 300 °C resulted in a loss of conversion due to the fact of catalyst deactivation. In addition, at longer times, the model predicted that the catalyst activity would decline faster at temperatures higher than 250 °C. The CFD model was able to predict this deactivation by relating the catalytic activity with the reaction temperature.


Author(s):  
Riandy Putra ◽  
Witri Wahyu Lestari ◽  
Fajar Rakhman Wibowo ◽  
Bambang Heru Susanto

The Petroleum diesel-based fossil fuel remains the primary source of energy consumption in Indonesia. The utilization of this unrenewable fuel depletes fossil fuels; thus, an alternative, renewable fuel, such as one based on biohydrocarbon from biomass-green diesel-could be an option. In this work, green diesel was produced through the hydrodeoxygenation from palm oil and processed in a batch-stirred autoclave reactor over natural zeolite (NZ) and NZ modified with 3 wt.% Fe metal (Fe/NZ) as heterogeneous catalyst. NZ showed high crystallinity and suitability to the simulated pattern of the mordenite and clinoptilolite phases according to X-ray diffraction (XRD) analysis. The presence of Fe metal was further confirmed by XRD, with an additional small diffraction peak of Fe0 that appeared at 2θ = 44-45°. Meanwhile, NZ and Fe/NZ were also characterized by Scanning electron microscopy (SEM) with Energy Dispersive X-ray (EDX), X-ray Fluorescence (XRF), and Surface Area Analyzer (SAA). The obtained materials were tested for the conversion of palm oil into diesel-range hydrocarbons (C15-C18) under conditions of 375 °C and 12 bar H2 for 2 h. NZ and Fe/NZ produced a liquid hydrocarbon with straight-chain (C15-C18) alkanes as the most abundant products. Based on Gas Chromatography-Mass Spectrometry (GC-MS) measurement, a higher conversion of palm oil into diesel-like hydrocarbons reached more than 58% and 89%, when NZ and Fe modified NZ (Fe/NZ), respectively were used as catalysts. Copyright © 2018 BCREC Group. All rights reservedReceived: 24th July 2017; Revised: 10th November 2017; Accepted: 15th November 2017; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Putra, R., Lestari, W.W., Wibowo, F.R., Susanto, B.H. (2018). Fe/Indonesian Natural Zeolite as Hydrodeoxygenation Catalyst in Green Diesel Production from Palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 245-255 (doi:10.9767/bcrec.13.2.1382.245-255) 


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Arguelles-Arguelles ◽  
Myriam Adela Amezcua-Allieri ◽  
Luis Felipe Ramírez-Verduzco

Transition to a new energy low carbon pool requires the gradual replacing of fossil fuels with other cleaner energies and biofuels. In this work, the environmental impact of renewable diesel production using an attributional life cycle assessment was evaluated by considering five stages: palm plantation-culture-harvest, palm oil extraction, palm oil refining, green (renewable) diesel production, and biofuel use. The functional unit was established as 1.6 × 10−2 m3 (13.13 kg) of renewable diesel. The results show that the production of renewable diesel by Hydro-processed Esters and Fatty Acids is more environmentally friendly than fossil diesel production. In particular, the analysis showed that the CO2 emission decreases around 110% (i.e. mitigation occurred) compared with conventional diesel production. However, renewable diesel production has a relevant environmental impact in the human toxicity category due to the high consumption of agrochemicals during palm culture.


Author(s):  
R. Selvaraj ◽  
I. Ganesh Moorthy ◽  
V. Sivasubramanian ◽  
R. Vinoth Kumar ◽  
R. Shyam Kumar

Sign in / Sign up

Export Citation Format

Share Document