scholarly journals Drifting Motions of the Adenovirus Receptor CAR and Immobile Integrins Initiate Virus Uncoating and Membrane Lytic Protein Exposure

2011 ◽  
Vol 10 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Christoph J. Burckhardt ◽  
Maarit Suomalainen ◽  
Philipp Schoenenberger ◽  
Karin Boucke ◽  
Silvio Hemmi ◽  
...  
2016 ◽  
Vol 90 (12) ◽  
pp. 5601-5610 ◽  
Author(s):  
Sandra Pinkert ◽  
Carsten Röger ◽  
Jens Kurreck ◽  
Jeffrey M. Bergelson ◽  
Henry Fechner

ABSTRACTThe coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1.IMPORTANCEAn important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.


1999 ◽  
Vol 105 (4) ◽  
pp. 354-359 ◽  
Author(s):  
K.R. Bowles ◽  
J. Gibson ◽  
J. Wu ◽  
L.G. Shaffer ◽  
J.A. Towbin ◽  
...  

2004 ◽  
Vol 78 (24) ◽  
pp. 13743-13754 ◽  
Author(s):  
Florian Kühnel ◽  
Bernd Schulte ◽  
Thomas Wirth ◽  
Norman Woller ◽  
Sonja Schäfers ◽  
...  

ABSTRACT Expression of cellular receptors determines viral tropism and limits gene delivery by viral vectors. Protein transduction domains (PTDs) have been shown to deliver proteins, antisense oligonucleotides, liposomes, or plasmid DNA into cells. In our study, we investigated the role of several PTD motifs in adenoviral infection. When physiologically expressed, a PTD from human immunodeficiency virus transactivator of transcription (Tat) did not improve adenoviral infection. We therefore fused PTDs to the ectodomain of the coxsackievirus-adenovirus receptor (CARex) to attach PTDs to adenoviral fiber knobs. CARex-Tat and CARex-VP22 allowed efficient adenoviral infection in nonpermissive cells and significantly improved viral uptake rates in permissive cells. Dose-dependent competition of CARex-PTD-mediated infection using CARex and inhibition experiments with heparin showed that binding of CARex-PTD to both adenoviral fiber and cellular glycosaminoglycans is essential for the improvement of infection. CARex-PTD-treated adenoviruses retained their properties after density gradient ultracentrifugation, indicating stable binding of CARex-PTD to adenoviral particles. Consequently, the mechanism of CARex-PTD-mediated infection involves coating of the viral fiber knobs by CARex-PTD, rather than placement of CARex domains on cell surfaces. Expression of CARex-PTDs led to enhanced lysis of permissive and nonpermissive tumor cells by replicating adenoviruses, indicating that CARex-PTDs are valuable tools to improve the efficacy of oncolytic therapy. Together, our study shows that CARex-PTDs facilitate gene transfer in nonpermissive cells and improve viral uptake at reduced titers and infection times. The data suggest that PTDs fused to virus binding receptors may be a valuable tool to overcome natural tropism of vectors and could be of great interest for gene therapeutic approaches.


Circulation ◽  
2003 ◽  
Vol 107 (6) ◽  
pp. 876-882 ◽  
Author(s):  
Henry Fechner ◽  
Michel Noutsias ◽  
Carsten Tschoepe ◽  
Kerstin Hinze ◽  
Xiaomin Wang ◽  
...  

Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 2832-2839 ◽  
Author(s):  
Maha Othman ◽  
Andrea Labelle ◽  
Ian Mazzetti ◽  
Hisham S. Elbatarny ◽  
David Lillicrap

AbstractThrombocytopenia has been consistently reported following the administration of adenoviral gene transfer vectors. The mechanism underlying this phenomenon is currently unknown. In this study, we have assessed the influence of von Willebrand Factor (VWF) and P-selectin on the clearance of platelets following adenovirus administration. In mice, thrombocytopenia occurs between 5 and 24 hours after adenovirus delivery. The virus activates platelets and induces platelet-leukocyte aggregate formation. There is an associated increase in platelet and leukocyte-derived microparticles. Adenovirus-induced endothelial cell activation was shown by VCAM-1 expression on virus-treated, cultured endothelial cells and by the release of ultra-large molecular weight multimers of VWF within 1 to 2 hours of virus administration with an accompanying elevation of endothelial microparticles. In contrast, VWF knockout (KO) mice did not show significant thrombocytopenia after adenovirus administration. We have also shown that adenovirus interferes with adhesion of platelets to a fibronectin-coated surface and flow cytometry revealed the presence of the Coxsackie adenovirus receptor on the platelet surface. We conclude that VWF and P-selectin are critically involved in a complex platelet-leukocyte-endothelial interplay, resulting in platelet activation and accelerated platelet clearance following adenovirus administration.


Sign in / Sign up

Export Citation Format

Share Document