Enhanced expression of coxsackievirus and adenovirus receptor in lipopolysaccharide-induced inflammatory macrophages is through TRIF-dependent innate immunity pathway

Life Sciences ◽  
2021 ◽  
Vol 265 ◽  
pp. 118832
Author(s):  
Chi-Hsin Lin ◽  
Yuan-Ching Chang ◽  
Ting-Kuo Chang ◽  
Chang-Hung Huang ◽  
Yung-Chang Lu ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Serrano ◽  
J. A. Crookshank ◽  
B. S. Morgan ◽  
R. W. Mueller ◽  
M.-F. Paré ◽  
...  

Abstract In a previous study we reported that prediabetic rats have a unique gene signature that was apparent even in neonates. Several of the changes we observed, including enhanced expression of pro-inflammatory genes and dysregulated UPR and metabolism genes were first observed in the liver followed by the pancreas. In the present study we investigated further early changes in hepatic innate immunity and metabolism in two models of type 1 diabetes (T1D), the BBdp rat and NOD mouse. There was a striking increase in lipid deposits in liver, particularly in neonatal BBdp rats, with a less striking but significant increase in neonatal NOD mice in association with dysregulated expression of lipid metabolism genes. This was associated with a decreased number of extramedullary hematopoietic clusters as well as CD68+ macrophages in the liver of both models. In addition, PPARɣ and phosphorylated AMPKα protein were decreased in neonatal BBdp rats. BBdp rats displayed decreased expression of antimicrobial genes in neonates and decreased M2 genes at 30 days. This suggests hepatic steatosis could be a common early feature in development of T1D that impacts metabolic homeostasis and tolerogenic phenotype in the prediabetic liver.


2018 ◽  
Vol 15 (3) ◽  
pp. 039601
Author(s):  
John K Hermann ◽  
Madhumitha Ravikumar ◽  
Andrew Shoffstall ◽  
Evon Ereifej ◽  
Kyle Kovach ◽  
...  

2016 ◽  
Vol 90 (12) ◽  
pp. 5601-5610 ◽  
Author(s):  
Sandra Pinkert ◽  
Carsten Röger ◽  
Jens Kurreck ◽  
Jeffrey M. Bergelson ◽  
Henry Fechner

ABSTRACTThe coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1.IMPORTANCEAn important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.


2016 ◽  
Vol 48 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Virginia M. Miller ◽  
Gregory D. Jenkins ◽  
Joanna M. Biernacka ◽  
John A. Heit ◽  
Gordon S. Huggins ◽  
...  

Prior to the initiation of menopausal hormone treatment (MHT), genetic variations in the innate immunity pathway were found to be associated with carotid artery intima-medial thickness (CIMT) and coronary arterial calcification (CAC) in women ( n = 606) enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Whether MHT might affect these associations is unknown. The association of treatment outcomes with variation in the same 764 candidate genes was evaluated in the same KEEPS participants 4 yr after randomization to either oral conjugated equine estrogens (0.45 mg/day), transdermal 17β-estradiol (50 μg/day), each with progesterone (200 mg/day) for 12 days each month, or placebo pills and patch. Twenty SNPs within the innate immunity pathway most related with CIMT after 4 yr were not among those associated with CIMT prior to MHT. In 403 women who completed the study in their assigned treatment group, single nucleotide polymorphisms (SNPs) within the innate immunity pathway were found to alter the treatment effect on 4 yr change in CIMT (i.e., significant interaction between treatment and genetic variation in the innate immunity pathway; P < 0.001). No SNPs by treatment effects were observed with changes of CAC >5 Agatston units after 4 yr. Results of this study suggest that hormonal status may interact with genetic variants to influence cardiovascular phenotypes, specifically, the pharmacogenomic effects within the innate immunity pathway for CIMT.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Mario G. Ortiz-Martínez ◽  
Orquídea Frías-Belén ◽  
Sylvette Nazario-Jiménez ◽  
María López-Quintero ◽  
Rosa I. Rodríguez-Cotto ◽  
...  

2002 ◽  
Vol 83 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Christopher J. Cohen ◽  
Zhi Quan Xiang ◽  
Guang-Ping Gao ◽  
Hildegund C. J. Ertl ◽  
James M. Wilson ◽  
...  

A replication-defective form of chimpanzee adenovirus type 68 (C68) has been developed to circumvent problems posed by widespread preexisting immunity to common human adenovirus vectors. To investigate the determinants of C68 tropism, its interaction with the coxsackievirus and adenovirus receptor (CAR) was studied. Although CHO cells were resistant to transduction by C68 as well as by adenovirus type 5 (Ad5), CHO cells expressing either human or murine CAR were transduced readily. C68 transduction, like Ad5 transduction, was blocked when cells were exposed to anti-CAR antibody or when virus was exposed to a soluble form of the CAR extracellular domain. These results indicate that gene delivery by C68 occurs by a CAR-dependent mechanism.


2008 ◽  
Vol 118 (8) ◽  
pp. 2758-2770 ◽  
Author(s):  
Byung-Kwan Lim ◽  
Dingding Xiong ◽  
Andrea Dorner ◽  
Tae-Jin Youn ◽  
Aaron Yung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document