scholarly journals Precision analysis for the determination of steric mass action parameters using eight tobacco host cell proteins

2021 ◽  
pp. 462379
Author(s):  
C.R. Bernau ◽  
R.C. Jäpel ◽  
J.W. Hübbers ◽  
S. Nölting ◽  
P. Opdensteinen ◽  
...  
2011 ◽  
Vol 1218 (45) ◽  
pp. 8197-8208 ◽  
Author(s):  
Jerome Pezzini ◽  
Gilles Joucla ◽  
René Gantier ◽  
Magali Toueille ◽  
Anne-Marie Lomenech ◽  
...  

2021 ◽  
Vol 71 ◽  
pp. 98-104
Author(s):  
Daniel G Bracewell ◽  
Victoria Smith ◽  
Mike Delahaye ◽  
C Mark Smales

2009 ◽  
Vol 103 (3) ◽  
pp. 446-458 ◽  
Author(s):  
Xing Wang ◽  
Alan K. Hunter ◽  
Ned M. Mozier

2021 ◽  
Author(s):  
Carolyn A Robinson ◽  
Terri D Lyddon ◽  
Hwi Min Gil ◽  
David T. Evans ◽  
Yury V Kuzmichev ◽  
...  

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we developed a cell-based 'gain of function' assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. It was conceivable that the compounds inhibited the formation of infectious virions by targeting host cell proteins instead of Vpu directly, so we developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu.


2020 ◽  
Author(s):  
Lara Contu ◽  
Giuseppe Balistreri ◽  
Michal Domanski ◽  
Anne-Christine Uldry ◽  
Oliver Mühlemann

AbstractThe positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus’ hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


2015 ◽  
Vol 370 (1661) ◽  
pp. 20140034 ◽  
Author(s):  
Elspeth F. Garman

Infection by the influenza virus depends firstly on cell adhesion via the sialic-acid-binding viral surface protein, haemagglutinin, and secondly on the successful escape of progeny viruses from the host cell to enable the virus to spread to other cells. To achieve the latter, influenza uses another glycoprotein, the enzyme neuraminidase (NA), to cleave the sialic acid receptors from the surface of the original host cell. This paper traces the development of anti-influenza drugs, from the initial suggestion by MacFarlane Burnet in 1948 that an effective ‘competitive poison’ of the virus' NA might be useful in controlling infection by the virus, through to the determination of the structure of NA by X-ray crystallography and the realization of Burnet's idea with the design of NA inhibitors. A focus is the contribution of the late William Graeme Laver, FRS, to this research.


Sign in / Sign up

Export Citation Format

Share Document