Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system

2017 ◽  
Vol 239 ◽  
pp. 146-157 ◽  
Author(s):  
M. Miyake
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2800
Author(s):  
Christopher Hill ◽  
Wasiu Abdullahi ◽  
Robert Dalgliesh ◽  
Martin Crossman ◽  
Peter Charles Griffiths

Oppositely charged polymer–surfactant complexes are frequently explored as a function of phase space defined by the charge ratio Z, (where Z = [+polymer]/[−surfactant]), commonly accessed through the surfactant concentration. Tuning the phase behaviour and related properties of these complexes is an important tool for optimising commercial formulations; hence, understanding the relationship between Z and bulk properties is pertinent. Here, within a homologous series of cationic hydroxyethyl cellulose (cat-HEC) polymers with minor perturbations in the degree of side chain charge modification, phase space is instead explored through [+polymer] at fixed Cpolymer. The nanostructures were characterised by small-angle neutron scattering (SANS) in D2O solutions and in combination with the oppositely charged surfactant sodium dodecylsulfate (h- or d-SDS). Scattering consistent with thin rods with an average radius of ∼7.7 Å and length of ∼85 Å was observed for all cat-HEC polymers and no significant interactions were shown between the neutral HEC polymer and SDS (CSDS < CMC). For the charge-modified polymers, interactions with SDS were evident and the radius of the formed complexes grew up to ∼15 Å with increasing Z. This study demonstrates a novel approach in which the Z phase space of oppositely charged polymer–surfactant complexes can be controlled at fixed concentrations.


2015 ◽  
Vol 18 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Hayder A. Abdulbari ◽  
Emsalam Faraj ◽  
Jolius Gimbun ◽  
Wafaa K. Mahmood

2016 ◽  
Vol 81 (5) ◽  
pp. 575-587 ◽  
Author(s):  
Lidija Petrovic ◽  
Jelena Milinkovic ◽  
Jadranka Fraj ◽  
Sandra Bucko ◽  
Jaroslav Katona

Polymer/surfactant association is a cooperative phenomenon where surfactant binds to the polymer in the form of aggregates, usually through electrostatic or hydrophobic forces. As already known, polyelectrolytes may interact with oppositely charged surfactants through electrostatic attraction that results in polymer/surfactant complex formation. This behavior could be desirable in wide range of application of polymer/surfactant mixtures, such as improving colloid stability, gelling, emulsification and microencapsulation. In the present study surface tension, turbidity, viscosity and electrophoretic mobility measurements were used to investigate interactions of cationic polyelectrolyte chitosan (Ch) and oppositely charged anionic surfactant, sodium dodecyl sulfate (SDS), in buffered water. Obtained results show the presence of interactions that lead to Ch/SDS complexes formation at all investigated pH and for all investigated polymer concentrations. Mechanisms of interaction, as well as characteristics of formed Ch/SDS complexes, are highly dependent on their mass ratio in the mixtures, while pH has no significant influence.


Sign in / Sign up

Export Citation Format

Share Document