scholarly journals Multi-coset angular sampling-based compressed sensing of blade tip-timing vibration signals under variable speeds

Author(s):  
Zhongsheng CHEN ◽  
Hao SHENG ◽  
Yemei XIA
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Suiyu Chen ◽  
Yongmin Yang ◽  
Haifeng Hu ◽  
Fengjiao Guan ◽  
Guoji Shen ◽  
...  

Monitoring the vibrations of high-speed rotating blades is significant to the security of turbomachineries. Blade tip timing (BTT) is considered as a promising technique for detecting blade vibrations without contact online. However, extracting blade vibration characteristics accurately from undersampled BTT signals measured at varying rotational speed (VRS) has become a big challenge. The existing two methods for this issue are restricted within the order bandwidth limitation and require prior information and precise sensor installation angles, which is often unpractical. To overcome these difficulties, a compressed sensing-based order analysis (CSOA) method was proposed. Its feasibility comes from the sparsity of BTT vibration signals in the order domain. The mathematical model for the proposed method was built, and the optimizing principles for sensor number and sensor arrangement were given. Simulated and experimental results verified the feasibility and advantages of the proposed method that it could extract order spectrum accurately from BTT vibration signals measured at VRS without the drawbacks in the existing two methods.


Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3235 ◽  
Author(s):  
Zhongsheng Chen ◽  
Jianhua Liu ◽  
Chi Zhan ◽  
Jing He ◽  
Weimin Wang

On-line vibration monitoring is significant for high-speed rotating blades, and blade tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that rotating speeds are constant. This assumption is impractical, and blade damages are always formed and accumulated during variable operational conditions. Thus, how to carry out BTT vibration monitoring under variable rotation speed (VRS) is a big challenge. Angular sampling-based order analyses have been widely used for vibration signals in rotating machinery with variable speeds. However, BTT vibration signals are well under-sampled, and Shannon’s sampling theorem is not satisfied so that existing order analysis methods will not work well. To overcome this problem, a reconstructed order analysis-based BTT vibration monitoring method is proposed in this paper. First, the effects of VRS on BTT vibration monitoring are analyzed, and the basic structure of angular sampling-based BTT vibration monitoring under VRS is presented. Then a band-pass sampling-based engine order (EO) reconstruction algorithm is proposed for uniform BTT sensor configuration so that few BTT sensors can be used to extract high EOs. In addition, a periodically non-uniform sampling-based EO reconstruction algorithm is proposed for non-uniform BTT sensor configuration. Next, numerical simulations are done to validate the two reconstruction algorithms. In the end, an experimental set-up is built. Both uniform and non-uniform BTT vibration signals are collected, and reconstructed order analysis are carried out. Simulation and experimental results testify that the proposed algorithms can accurately capture characteristic high EOs of synchronous and asynchronous vibrations under VRS by using few BTT sensors. The significance of this paper is to overcome the limitation of conventional BTT methods of dealing with variable blade rotating speeds.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 649-661
Author(s):  
Xiao Chaoang ◽  
Tang Hesheng ◽  
Ren Yan

Aiming at the mechanical equipment in the fault diagnosis process, the traditional Shannon–Nyquist sampling theorem is used for data collection, which faces main problems of storage, transmission, and processing of mechanical vibration signals. This paper presents a novel method of compressed sensing reconstruction for axial piston pump bearing vibration signals based on the adaptive sparse dictionary model. First, vibration signals were divided into blocks, and an energy sequence was produced in accordance with the energy of each signal block. Second, the energy sequence of each signal block was classified by the quantum particle swarm optimization algorithm. Finally, the reconstruction of machinery vibration signals was carried out using the K-SVD dictionary algorithm. The average relative error of the reconstructed signal obtained by the proposed algorithm is 4.25%, and the reconstruction time decreases by 43.6% when the compression ratio is 1.6.


Sign in / Sign up

Export Citation Format

Share Document