scholarly journals Compressed Sensing-Based Order Analysis for Blade Tip Timing Signals Measured at Varying Rotational Speed

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Suiyu Chen ◽  
Yongmin Yang ◽  
Haifeng Hu ◽  
Fengjiao Guan ◽  
Guoji Shen ◽  
...  

Monitoring the vibrations of high-speed rotating blades is significant to the security of turbomachineries. Blade tip timing (BTT) is considered as a promising technique for detecting blade vibrations without contact online. However, extracting blade vibration characteristics accurately from undersampled BTT signals measured at varying rotational speed (VRS) has become a big challenge. The existing two methods for this issue are restricted within the order bandwidth limitation and require prior information and precise sensor installation angles, which is often unpractical. To overcome these difficulties, a compressed sensing-based order analysis (CSOA) method was proposed. Its feasibility comes from the sparsity of BTT vibration signals in the order domain. The mathematical model for the proposed method was built, and the optimizing principles for sensor number and sensor arrangement were given. Simulated and experimental results verified the feasibility and advantages of the proposed method that it could extract order spectrum accurately from BTT vibration signals measured at VRS without the drawbacks in the existing two methods.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3235 ◽  
Author(s):  
Zhongsheng Chen ◽  
Jianhua Liu ◽  
Chi Zhan ◽  
Jing He ◽  
Weimin Wang

On-line vibration monitoring is significant for high-speed rotating blades, and blade tip-timing (BTT) is generally regarded as a promising solution. BTT methods must assume that rotating speeds are constant. This assumption is impractical, and blade damages are always formed and accumulated during variable operational conditions. Thus, how to carry out BTT vibration monitoring under variable rotation speed (VRS) is a big challenge. Angular sampling-based order analyses have been widely used for vibration signals in rotating machinery with variable speeds. However, BTT vibration signals are well under-sampled, and Shannon’s sampling theorem is not satisfied so that existing order analysis methods will not work well. To overcome this problem, a reconstructed order analysis-based BTT vibration monitoring method is proposed in this paper. First, the effects of VRS on BTT vibration monitoring are analyzed, and the basic structure of angular sampling-based BTT vibration monitoring under VRS is presented. Then a band-pass sampling-based engine order (EO) reconstruction algorithm is proposed for uniform BTT sensor configuration so that few BTT sensors can be used to extract high EOs. In addition, a periodically non-uniform sampling-based EO reconstruction algorithm is proposed for non-uniform BTT sensor configuration. Next, numerical simulations are done to validate the two reconstruction algorithms. In the end, an experimental set-up is built. Both uniform and non-uniform BTT vibration signals are collected, and reconstructed order analysis are carried out. Simulation and experimental results testify that the proposed algorithms can accurately capture characteristic high EOs of synchronous and asynchronous vibrations under VRS by using few BTT sensors. The significance of this paper is to overcome the limitation of conventional BTT methods of dealing with variable blade rotating speeds.


Author(s):  
Jindrich Liska ◽  
Vojtech Vasicek ◽  
Jan Jakl

Ensuring the reliability of the steam turbine is the key for its long life. For this purpose monitoring systems are standardly used. Early detection of any failure can avoid possible economical and material losses. A monitoring of rotating blades vibration belongs to the very important tasks of the turbomachinery state assessment. Especially in terms of the last stages of low-pressure part, where the longest blades are vibrating at most. Commonly used methods for blade vibration monitoring are based on contact measurement using strain gauges or non-contact approach based on blade tip timing measurement. Rising demand for low-cost monitoring systems has initiated development of a new approach in blade vibration monitoring task. The presented approach is based on usage of relative rotor vibration signals. Its advantage is in using of standardly installed sensors making this approach economically interesting for the turbine operators compared to the traditionally used methods, mentioned above. This paper summarizes the symptoms of blade vibration phenomenon in relative shaft vibration signals, the impact of operating conditions on the blade vibration amplitude and its comparison to blade tip-timing measurement results. In addition of several examples, the article also describes an evaluation of proposed method in operation of steam turbine with power of 170MW.


Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

This paper investigates the role of tip clearance flow in the occurrence of non-synchronous vibrations (NSV) observed in the first axial rotor of a high-speed high-pressure compressor (HPC) in an aero-engine. NSV is an aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies in operating regimes where classical flutter is not known to occur. A physical mechanism to explain the NSV phenomenon is proposed based on the blade tip trailing edge impinging jet like flow, and a novel theory based on the acoustic feedback in the jet potential core. The theory suggests that the critical jet velocity, which brings a jet impinging on a rigid structure to resonance, is reduced to the velocities observed in the blade tip secondary flow when the jet impinges on a flexible structure. The feedback mechanism is then an acoustic wave traveling backward in the jet potential core, and this is experimentally demonstrated. A model is proposed to predict the critical tip speed at which NSV can occur. The model also addresses several unexplained phenomena, or missing links, which are essential to connect tip clearance flow unsteadiness to NSV. These are the pressure level, the pitch-based reduced frequency, and the observed step changes in blade vibration and mode shape. The model is verified using two different rotors that exhibited NSV.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

This paper investigates the role of tip clearance flow in the occurrence of nonsynchronous vibrations (NSVs) observed in the first axial rotor of a high-speed high-pressure compressor in an aeroengine. NSV is an aeroelastic phenomenon where the rotor blades vibrate at nonintegral multiples of the shaft rotational frequencies in operating regimes where classical flutter is not known to occur. A physical mechanism to explain the NSV phenomenon is proposed based on the blade tip trailing edge impinging jetlike flow, and a novel theory based on the acoustic feedback in the jet potential core. The theory suggests that the critical jet velocity, which brings a jet impinging on a rigid structure to resonance, is reduced to the velocities observed in the blade tip secondary flow when the jet impinges on a flexible structure. The feedback mechanism is then an acoustic wave traveling backward in the jet potential core, and this is experimentally demonstrated. A model is proposed to predict the critical tip speed at which NSV can occur. The model also addresses several unexplained phenomena, or missing links, which are essential to connect tip clearance flow unsteadiness to NSV. These are the pressure level, the pitch-based reduced frequency, and the observed step changes in blade vibration and mode shape. The model is verified using two different rotors that exhibited NSV.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Romain Mandard ◽  
Jean-François Witz ◽  
Yannick Desplanques ◽  
Jacky Fabis ◽  
Jean Meriaux

Minimizing the clearance between turbofan blades and the surrounding casing is a key factor to achieving compressor efficiency. The deposition of an abradable coating on casings is one of the technologies used to reduce this blade-casing clearance and ensure blade integrity in the event of blade-casing contact. Aircraft in-service conditions may lead to interactions between the blade tip and the coated casing, during which wear of the abradable coating, blade dynamics, and interacting force are critical yet little-understood issues. In order to study blade/abradable-coating interactions of a few tens of milliseconds, experiments were conducted on a dedicated test rig. The experimental data were analyzed with the aim of determining the friction-induced vibrational modes of the blade. This involved a time-frequency analysis of the experimental blade strain using continuous wavelet transform (CWT) combined with a modal analysis of the blade. The latter was carried out with two kinds of kinematic boundary conditions at the blade tip: free and modified, by imposing contact with the abradable coating. The interaction data show that the blade vibration modes identified during interactions correspond to the free boundary condition due to the transitional nature of the phenomena and the very short duration of contacts. The properties of the continuous wavelet transform were then used to identify the occurrence of blade-coating contact. Two kinds of blade/abradable-coating interactions were identified: bouncing of the blade over short time periods associated with loss of abradable material and isolated contacts capable of amplifying the blade vibrations without causing significant wear of the abradable coating. The results obtained were corroborated by high-speed imaging of the interactions.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 140
Author(s):  
Ke Zhu ◽  
Chuantan Ruan ◽  
Heyuan Wang ◽  
Sheng Li ◽  
Jian Ruan

Two-dimensional pumps have broad application prospects in aerospace. However, the performance of the pump is degraded because of the clearance problem of the current 2D transmission mechanism. In order to eliminate the clearance between the cam rail and the rollers, a high-speed transmission mechanism with a stacked roller set is proposed. The stacked roller set is compressed by the load pressure. The axial inertia force is balanced when the transmission mechanism works at high speed, via the equal acceleration and reverse movement of two cam rail sets. Thus, the transmission mechanism meets the high-speed demand. In this paper, the mathematical model of the transmission mechanism is established based on the enveloping surface theory and the differential geometry principle. Afterwards, numerical analysis of the mathematical model is performed based on MATLAB, combined with the experiment, to study the influence of load pressure and rotational speed on the torque loss. Then, the torque characteristics of the transmission mechanism is obtained. According to a test, the deviation between theoretical data and experimental data is 11.9%; therefore, the mathematical model can predict the torque of the transmission mechanism effectively. It is concluded that the torque loss of the transmission mechanism increases linearly with the load pressure, and the rotational speed has a slight effect on the torque loss.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Suzana Uran ◽  
Matjaž Malok ◽  
Božidar Bratina ◽  
Riko Šafarič

Constructing a micro-sized microfluidic motor always involves the problem of how to transfer the mechanical energy out of the motor. The paper presents several experiments with pot-like microfluidic rotational motor structures driven by two perpendicular sine and cosine vibrations with amplitudes around 10 μm in the frequency region from 200 Hz to 500 Hz. The extensive theoretical research based on the mathematical model of the liquid streaming in a pot-like structure was the base for the successful real-life laboratory application of a microfluidic rotational motor. The final microfluidic motor structure allowed transferring the rotational mechanical energy out of the motor with a central axis. The main practical challenge of the research was to find the proper balance between the torque, due to friction in the bearings and the motor’s maximal torque. The presented motor, with sizes 1 mm by 0.6 mm, reached the maximal rotational speed in both directions between −15 rad/s to +14 rad/s, with the estimated maximal torque of 0.1 pNm. The measured frequency characteristics of vibration amplitudes and phase angle between the directions of both vibrational amplitudes and rotational speed of the motor rotor against frequency of vibrations, allowed us to understand how to build the pot-like microfluidic rotational motor.


Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


Sign in / Sign up

Export Citation Format

Share Document