Comment on the paper “Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity, Mair Khan, T. Salahuddin, A. Tanveer, M.Y. Malik, Arif Hussain, Chinese Journal of Chemical Engineering, doi:10.1016/j.cjche.2018.12.023”

2020 ◽  
Vol 28 (3) ◽  
pp. 933-934 ◽  
Author(s):  
Asterios Pantokratoras
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Anwar Saeed ◽  
...  

AbstractIn this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time-dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, $${\text{TiO}}_{2} \,\,{\text{and}}\,\,{\text{Ag}}$$ TiO 2 and Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Optimal Homotopy Analysis Method is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. Detailed research is also performed to investigate the influences of relevant constraints on the rates, momentum and heat transport for both $${\text{TiO}}_{2} + {\text{Ag}} + Blood$$ TiO 2 + Ag + B l o o d and $${\text{TiO}}_{2} + Blood$$ TiO 2 + B l o o d . One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in the case of the hybrid nanofluid enhances the thermal conductivity from 5.8 to 11.947% and for the same value of the nanoparticle volume fraction in the case of nanofluid enhance the thermal conductivity from 2.576 to 5.197%.


2020 ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Saleem Nasir ◽  
Muhammad Jawad ◽  
Anwar Saeed

Abstract In this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, TiO2, and, Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Homotopy Analysis Method (HAM) approach is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. A detailed research is also performed in order to investigate the influences of relevant constraints on the rates, momentum and heat transport for both TiO2 + Ag + Blood and TiO2 + Blood. One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in case of the hybrid nanofluid enhance the thermal conductivity from 5.8% to 11.947% and for the same value of the nanoparticle volume fraction in case of nanofluid enhance the thermal conductivity from 2.576% to 5.197%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


2020 ◽  
Vol 11 (4) ◽  
pp. 1275-1294
Author(s):  
Mohamad Hidayad Ahmad Kamal ◽  
Anati Ali ◽  
Sharidan Shafie ◽  
Noraihan Afiqah Rawi ◽  
Mohd Rijal Ilias

Sign in / Sign up

Export Citation Format

Share Document