Hybrid Nanofluid Flow over Two Different Geometries with Cattaneo-Christov Heat Flux Model and Heat Generation: A Model with Correlation Coefficient and Probable Error

Author(s):  
Rashmi Garia ◽  
Sawan Kumar Rawat ◽  
Manoj Kumar ◽  
Moh Yaseena
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saima Batool ◽  
Muhammad Nawaz ◽  
Mohammed Kbiri Alaoui

PurposeThis study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in conventional fluid. It has been found from the extensive literature survey that no study has been conducted to investigate buoyancy effects on the flow of Maxwell fluid comprised of hybrid microstructures and heat generation aspects through the non-Fourier heat flux model.Design/methodology/approachNon-Fourier heat flux model and non-Newtonian stress–strain rheology with momentum and thermal relaxation phenomena are used to model the transport of heat and momentum in viscoelastic fluid over convectively heated surface. The role of suspension of mono and hybrid nanostructures on an increase in the thermal efficiency of fluid is being used as a medium for transportation of heat energy. The governing mathematical problems with thermo-physical correlations are solved via shooting method.FindingsIt is noted from the simulations that rate of heat transfer is much faster in hybrid nanofluid as compare to simple nanofluid with the increasing heat-generation coefficient. Additionally, an increment in the thermal relaxation time leads to decrement in the reduced skin friction coefficient; however, strong behavior of Nusselt number is shown when thermal relaxation time becomes larger for hybrid nanofluid as well as simple nanofluid.Originality/valueAccording to the literature survey, no investigation has been made on buoyancy effects of Maxwell fluid flow with hybrid microstructures and heat generation aspects through non-Fourier heat flux model. The authors confirm that this work is original, and it has neither been published elsewhere nor is it currently under consideration for publication elsewhere.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1363 ◽  
Author(s):  
Iqbal ◽  
Khan ◽  
Mustafa ◽  
Ghaffari

The objective of this study is to analyze the natural convection flow of nanofluid along a circular cone placed in a vertical direction. The generalized heat flux and mass flux models are commonly known as the Cattaneo–Christov heat flux model and mass flux models. In the present study, these models are used for both heat and mass transfers analysis in nanofluid flow. For the governing equations, the Buongiorno transport model is used in which two important slip mechanism, namely thermophoresis and Brownian motion parameters, are discussed. The resulting governing equations in the form of partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) due to similar flow along the surface of a circular cone. To solve these ODEs, a numerical algorithm based on implicit finite difference scheme is utilized. The effects of dimensionless parameters on heat and mass transfer in nanofluid flow are discussed graphically in the form of velocity profile, temperature profile, Sherwood number and Nusselt number. It is noted that in the presence of the Cattaneo–Christov heat flux model and mass flux model, the heat transfer rate decreases by increasing both thermal and concentration relaxation parameters; however, Sherwood number decreases by increasing the thermal relaxation parameter, and increases by increasing the concentration relaxation parameter.


2021 ◽  
Vol 145 ◽  
pp. 110774
Author(s):  
R.J. Punith Gowda ◽  
Fahad S. Al-Mubaddel ◽  
R. Naveen Kumar ◽  
B.C. Prasannakumara ◽  
Alibek Issakhov ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Gosa Gadisa ◽  
Tagay Takele ◽  
Shibiru Jabessa

In this investigation, thermal radiation effect on MHD nonlinear convective micropolar couple stress nanofluid flow by non-Fourier’s-law heat flux model past a stretching sheet with the effects of diffusion-thermo, thermal-diffusion, and first-order chemical reaction rate is reported. The robust numerical method called the Galerkin finite element method is applied to solve the proposed fluid model. We applied grid-invariance test to approve the convergence of the series solution. The effect of the various pertinent variables on velocity, angular velocity, temperature, concentration, local skin friction, local wall couple stress, local Nusselt number, and local Sherwood number is analyzed in both graphical and tabular forms. The range of the major relevant parameters used for analysis of the present study was adopted from different existing literatures by taking into consideration the history of the parameters and is given by 0.07 ≤ Pr ≤ 7.0 , 0.0 ≤ λ , ε ≤ 1.0 , 0.0 ≤ R d , D f   , S r , K , ≤ 1.5 , 0.0 ≤ γ E ≤ 0.9 , 0.9 ≤ S c ≤ 1.5 , 0.5 ≤ M ≤ 1.5 , 0.0 ≤ β ≤ 1.0 , 0 . 2 ≤ N b ≤ 0 . 4 , 0 . 1 ≤ N t ≤ 0 . 3 . The result obtained in this study is compared with that in the available literatures to confirm the validity of the present numerical method. Our result shows that the heat and mass transfer in the flow region of micropolar couple stress fluid can be enhanced by boosting the radiation parameters.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Muhammad Wakeel Ahmad ◽  
Luthais B. McCash ◽  
Zahir Shah ◽  
Rashid Nawaz

The second grade nanofluid flow with Cattaneo-Christov heat flux model by a stretching disk is examined in this paper. The nanofluid flow is characterized with Hall current, Brownian motion and thermophoresis influences. Entropy optimization with nonlinear thermal radiation, Joule heating and heat absorption/generation is also presented. The convergence of an analytical approach (HAM) is shown. Variation in the nanofluid flow profiles (velocities, thermal, concentration, total entropy, Bejan number) via influential parameters and number are also presented. Radial velocity, axial velocity and total entropy are enhanced with the Weissenberg number. Axial velocity, tangential velocity and Bejan number are heightened with the Hall parameter. The total entropy profile is enhanced with the Brinkman number, diffusion parameter, magnetic parameter and temperature difference. The Bejan number profile is heightened with the diffusion parameter and temperature difference. Arithmetical values of physical quantities are illustrated in Tables.


Sign in / Sign up

Export Citation Format

Share Document