Non-Fourier thermal analysis on transport of heat and momentum in viscoelastic fluid over convectively heat surface in the presence of thermal memory effects

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saima Batool ◽  
Muhammad Nawaz ◽  
Mohammed Kbiri Alaoui

PurposeThis study presents a mathematical approach and model that can be useful to investigate the thermal performance of fluids with microstructures via hybrid nanoparticles in conventional fluid. It has been found from the extensive literature survey that no study has been conducted to investigate buoyancy effects on the flow of Maxwell fluid comprised of hybrid microstructures and heat generation aspects through the non-Fourier heat flux model.Design/methodology/approachNon-Fourier heat flux model and non-Newtonian stress–strain rheology with momentum and thermal relaxation phenomena are used to model the transport of heat and momentum in viscoelastic fluid over convectively heated surface. The role of suspension of mono and hybrid nanostructures on an increase in the thermal efficiency of fluid is being used as a medium for transportation of heat energy. The governing mathematical problems with thermo-physical correlations are solved via shooting method.FindingsIt is noted from the simulations that rate of heat transfer is much faster in hybrid nanofluid as compare to simple nanofluid with the increasing heat-generation coefficient. Additionally, an increment in the thermal relaxation time leads to decrement in the reduced skin friction coefficient; however, strong behavior of Nusselt number is shown when thermal relaxation time becomes larger for hybrid nanofluid as well as simple nanofluid.Originality/valueAccording to the literature survey, no investigation has been made on buoyancy effects of Maxwell fluid flow with hybrid microstructures and heat generation aspects through non-Fourier heat flux model. The authors confirm that this work is original, and it has neither been published elsewhere nor is it currently under consideration for publication elsewhere.

2018 ◽  
Vol 388 ◽  
pp. 146-157 ◽  
Author(s):  
K. Gangadhar ◽  
Chintalapudi Suresh Kumar ◽  
S. Mohammed Ibrahim ◽  
Giulio Lorenzini

The study observes the flow and heat transfer in upper-convected Maxwell fluid over a rapidly stretching surface with viscous dissipation. Cattaneo-Christov heat flux model has been used in the preparation of the energy equation. The model is used in guessing the impacts of thermal relaxation time over boundary layer. Similarity method has been used to keep normal the supervising boundary layer equations. Local similarity solutions have been obtained through spectral relaxation method. The fluid temperature has a relation with thermal relaxation time inversely and our calculations have shown the same.. In addition the fluid velocity is a receding activity of the fluid relaxation time. A comparative study of Fourier’s law and the Cattaneo-Christov’s law has been done and inserted in this.


2019 ◽  
pp. 270-270
Author(s):  
Muhammad Asmadi ◽  
Ruhaila Kasmani ◽  
Zailan Siri ◽  
Sivanandam Sivasankaran

Boundary layer flow of Upper-Convected Maxwell fluid over a wedge with suction and heat generation/absorption is presented in this paper by considering the Cattaneo-Christov heat flux model. The governed equations are transformed into a set of the ordinary differential equation using similarity transformations. A third-order finite difference method for the ordinary differential equation is used to find the local similarity solutions of the problems. The effects of the wedge angle parameter, viscoelastic fluid parameter, thermal relaxation time parameter, and heat generation/absorption parameter are presented in this study.


2018 ◽  
Vol 28 (7) ◽  
pp. 1539-1555 ◽  
Author(s):  
S. Abbasbandy ◽  
M. Mustafa

Purpose This paper aims to describe the laminar flow of Maxwell fluid past a non-isothermal rigid plate with a stream wise pressure gradient. Heat transfer mechanism is analyzed in the context of non-Fourier heat conduction featuring thermal relaxation effects. Design/methodology/approach Flow field is permeated to uniform transverse magnetic field. The governing transport equations are changed to globally similar ordinary differential equations, which are tackled analytically by homotopy analysis technique. Homotopy analysis method-Padè approach is used to accelerate the convergence of homotopy solutions. Also, numerical approximations are made by means of shooting method coupled with fifth-order Runge-Kutta method. Findings The solutions predict that fluid relaxation time has a tendency to suppress the hydrodynamic boundary layer. Also, heat penetration depth reduces for increasing values of thermal relaxation time. The general trend of wall temperature gradient appears to be similar in Fourier and Cattaneo–Christov models. Research limitations/implications An important implication of current research is that the thermal relaxation time considerably alters the temperature and surface heat flux. Originality/value Current problem even in case of Newtonian fluid has not been attempted previously.


Author(s):  
Vasu B. ◽  
Atul Kumar Ray

PurposeTo achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.Design/methodology/approachThe governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.FindingsThe effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.Originality/valueThe present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402095956
Author(s):  
Iffat Jabeen ◽  
Muhammad Farooq ◽  
Muhammad Rizwan ◽  
Roman Ullah ◽  
Shakeel Ahmad

The stratification phenomena have great importance in fishery management, insufficiency of dissolved oxygen in the lower parts of lakes, rivers and ponds, and phytoplankton populations. Thus the present article examines vital role of stratification phenomena in Powell-Eyring fluid flow due to inclined sheet which is stretched in a linear way. Collaboration of Cattaneo-Christov heat and mass flux model instead of Fourier Law of heat conduction is also accounted. Interpretation of heat transport is carried out with heat generation/absorption. Thermal stratification supports heat transport. Chemical reaction and solutal stratification also helped out mass transport. Non-linear governing equations with partial derivatives are converted into ordinary differential equation with the help of similarity transformations. Homotopic method is applied to solve arising dimensionless governing equations. Pertinent parameters and their physical behavior are displayed graphically. Drag force coefficient is also examined graphically. In culmination, substantial parameters of radiation and heat generation/absorption raised the temperature field while thermal relaxation time and solutal relaxation time parameters lower the temperature and concentration fields, respectively.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehboob Ali ◽  
F. Sultan ◽  
Waqar Azeem Khan ◽  
M. Shahzad ◽  
Hina Arif ◽  
...  

Purpose The purpose of this paper is to investigate the heat transportation rate by using Cattaneo–Christov heat flux model. Furthermore, homogeneous-heterogeneous reaction is also deliberated in the modeling of concentration expression. Design/methodology/approach The nonlinear PDEs are reduced to ODEs via implementation of applicable transformations. Numerical scheme bvp4c is used to obtain convergent solutions. Findings The main findings are to characterize the generalized Fourier’s heat flux and homogeneous-heterogeneous reactions in 3D flow of non-Newtonian cross fluid. Originality/value It is to certify that this paper is neither published earlier nor submitted elsewhere.


2017 ◽  
Vol 55 (4) ◽  
pp. 1615-1625 ◽  
Author(s):  
S. Saleem ◽  
M. Awais ◽  
S. Nadeem ◽  
N. Sandeep ◽  
M.T. Mustafa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Naveed ◽  
Muhammad Imran ◽  
Zaheer Abbas

Abstract This paper aims to investigate the transfer of heat phenomenon in a hydromagnetic time dependent flow of micropolar fluid across an oscillating stretchable curved surface by using the Cattaneo–Christov heat flux model, which considers thermal relaxation time. An elastic curved surface that stretches back and forth causes the flow situation. The flow equations are derived as nonlinear partial differential equations by incorporating a curvilinear coordinates system, which is then solved analytically via the homotopy analysis method (HAM). The accuracy of the derived analytical results is also examined by using a finite-difference technique known as the Keller box method, and it is found to be in strong agreement. The influences of various physical characteristics such as material parameter, magnetic parameter, thermal relaxation parameter, a dimensionless radius of curvature, Prandtl number and ratio of surface’s oscillating frequency to its stretching rate parameter on angular velocity, fluid velocity, pressure, temperature, heat transmission rate, and skin friction and couple stress coefficient are depicted in detail with the help of graphs and tables. Furthermore, for the verification and validation of the current results, a tabular comparison of the published data in the literature for the case of flat oscillating surface versus curved oscillating surface is carried out and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document