F.45. Severe Multi-organ Auto-immunity Due to a Compound Heterozygous TNFRSF13B Mutation in a Pediatric CVID Patient

2009 ◽  
Vol 131 ◽  
pp. S106
Author(s):  
Annick van de Ven ◽  
Lisette van de Corput ◽  
Michiel van Diemen de Jel ◽  
Andries Bloem ◽  
Kiki Tesselaar ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Annick A. J. M. van de Ven ◽  
Willemijn J. M. Janssen ◽  
Lisette van de Corput ◽  
Andries C. Bloem ◽  
Joris M. van Montfrans ◽  
...  

Purpose. Approximately 9% of common variable immunodeficiency (CVID) patients harbor variants in the transmembrane activator and CAML interactor gene, TACI, which contribute to CVID development. We found identical compound heterozygous TACI variants (C104R and A181E) in kindred of which one sibling had severe CVID with refractory auto immunity, and a second sibling remained asymptomatic. This study investigated possible differences in B-cell phenotype and function that could explain this divergent clinical expression. Methods. C104R and A181E TACI variants were identified through Sanger sequencing. Phenotypic evaluation of the lymphocyte compartment was performed by flow cytometry analyses. Lymphoblastoid cell lines (LCL) from the index patient, asymptomatic sibling, and controls were generated. Intracellular TACI expression was determined, and activation-associated calcium flux capacity was measured. In vitro stimulation assays and RT PCR were performed. Results. Both intracellular levels and surface expressed TACI protein were higher in the asymptomatic sibling than the CVID patient as were TACI-triggering-induced mRNA expression AID and production of Ig class-switched antibodies. In analogy, the asymptomatic sibling displayed enhanced Toll-like receptor 9 expression and signaling, suggesting a compensatory immune mechanism. Conclusions. Posttranscriptional regulation of TACI protein and cross-talk with TLR9 signaling may contribute to phenotypic diversity between individuals with TACI variants.


1998 ◽  
Vol 53 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Satoko Hojo ◽  
Jiro Fujita ◽  
Hiroshi Miyawaki ◽  
Yuka Obayashi ◽  
Jiro Takahara ◽  
...  

1996 ◽  
Vol 76 (06) ◽  
pp. 1004-1008 ◽  
Author(s):  
R C Tait ◽  
Isobel D Walker ◽  
J A Conkie ◽  
S I A M Islam ◽  
Frances McCall

SummaryDespite many reports of individuals with congenital plasminogen deficiency and thrombosis, there is still uncertainty whether heterozygous deficiency represents a real thrombophilic risk factor or simply a coincidental finding. We have addressed this issue by testing for plasminogen deficiency in a cohort of 9611 blood donors. Out of 66 donors with reduced plasminogen activity on two occasions 28 were shown to have a familial deficiency state (including 3 with dysplasminogen-aemia). Our observed prevalence rate for familial plasminogen deficiency, calculated at 2.9/1000 (95% Cl = 1.9-4.2 per 1000), was not significantly different from that calculated from published reports of congenital plasminogen deficiency in thrombotic cohorts (5.4/1000). Furthermore, with only two exceptions, all 80 donors and relatives with familial deficiency were asymptomatic with regard to thrombosis -including a 29 year old donor with suspected compound heterozygous hypoplasminogenaemia. These findings add further weight to the argument that familial heterozygous plasminogen deficiency, at least in isolation, does not constitute a significant thrombotic risk factor. However, it remains uncertain whether plasminogen deficiency, when combined with other thrombophilic conditions, may become more clinically important.


1996 ◽  
Vol 76 (02) ◽  
pp. 277-278 ◽  
Author(s):  
Masaru Ido ◽  
Tatsuya Hayashi ◽  
Junji Nishioka ◽  
Masazumi Itoh ◽  
Hiroyuki Minoura ◽  
...  

Author(s):  
Deirdre O'Sullivan ◽  
Michael Moore ◽  
Susan Byrne ◽  
Andreas O. Reiff ◽  
Susanna Felsenstein

AbstractAcute disseminated encephalomyelitis in association with extensive longitudinal transverse myelitis is reported in a young child with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody with heterozygous NLRP3 missense mutations; p.(Arg488Lys) and p.(Ser159Ile). This case may well present an exceptional coincidence, but may describe a yet unrecognized feature of the spectrum of childhood onset cryopyrinopathies that contribute to the understanding of the genetic basis for anti-MOG antibody positive encephalomyelitis. Based on this observation, a larger scale study investigating the role of NLRP3 and other inflammasomes in this entity would provide important pathophysiological insights and potentially novel avenues for treatment.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


Sign in / Sign up

Export Citation Format

Share Document