Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea

2008 ◽  
Vol 23 (2) ◽  
pp. 242-247 ◽  
Author(s):  
A. Kettler ◽  
J. Drumm ◽  
F. Heuer ◽  
K. Haeussler ◽  
C. Mack ◽  
...  
2001 ◽  
Vol 94 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Lutz Claes

Object. The aim of this in vitro study was to determine the influence of simulated postoperative neck movements on the stabilizing effect and subsidence of four different anterior cervical interbody fusion devices. Emphasis was placed on the relation between subsidence and spinal stability. Methods. The flexibility of 24 human cervical spine specimens was tested before and directly after being stabilized with a WING, BAK/C, AcroMed I/F cage, or with bone cement in standard flexibility tests under 50 N axial preload. Thereafter, 700 pure moment loading cycles (± 2 Nm) were applied in randomized directions to simulate physiological neck movements. Additional flexibility tests in combination with measurements of the subsidence depth were conducted after 50, 100, 200, 300, 500, and 700 loading cycles. In all four groups, simulated postoperative neck movements caused an increase of the range of motion (ROM) ranging from 0.4 to 3.1° and of the neutral zone from 0.1 to 4.2°. This increase in flexibility was most distinct in extension followed by flexion, lateral bending, and axial rotation. After cyclic loading, ROM tended to be lower in the group fitted with AcroMed cages (3.3° in right lateral bending, 3.5° in left axial rotation, 7.8° in flexion, 8.3° in extension) and in the group in which bone cement was applied (5.4°, 2.5°, 7.4°, and 8.8°, respectively) than in those fixed with the WING (6.3°, 5.4°, 9.7°, and 6.9°, respectively) and BAK cages (6.2°, 4.5°, 10.2°, and 11.6°, respectively). Conclusions. Simulated repeated neck movements not only caused an increase of the flexibility but also subsidence of the implants into the adjacent vertebrae. The relation between flexibility increase and subsidence seemed to depend on the implant design: subsiding BAK/C cages partially supported stability whereas subsiding WING cages and AcroMed cages did not.


Author(s):  
Nicole A. DeVries ◽  
Anup A. Gandhi ◽  
Douglas C. Fredericks ◽  
Joseph D. Smucker ◽  
Nicole M. Grosland

Due to the limited availability of human cadaveric specimens, animal models are often utilized for in vitro studies of various spinal disorders and surgical techniques. Sheep spines have similar geometry, disc space, and lordosis as compared to humans [1,2]. Several studies have identified the geometrical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [2–3]. Although anatomical similarities are important, biomechanical correspondence is imperative to understand the effects of disorders, surgical techniques, and implant designs. Some studies [3–5] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs). Szotek and colleagues [1] studied the biomechanics of compression and impure flexion-extension for the C2-C7 intact sheep spine. However, to date, there is no comparison of the sheep spine using pure flexion-extension, lateral bending, or axial rotation moments for multilevel specimen. Therefore, the purpose of this study was to conduct in vitro testing of the intact C2-C7 sheep cervical spine.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document