Feedback-related processes during a time-production task in young and older adults

2009 ◽  
Vol 120 (2) ◽  
pp. 407-413 ◽  
Author(s):  
Nele Wild-Wall ◽  
Rita Willemssen ◽  
Michael Falkenstein
2019 ◽  
Vol 62 (5) ◽  
pp. 1258-1277 ◽  
Author(s):  
Megan K. MacPherson

PurposeThe aim of this study was to determine the impact of cognitive load imposed by a speech production task on the speech motor performance of healthy older and younger adults. Response inhibition, selective attention, and working memory were the primary cognitive processes of interest.MethodTwelve healthy older and 12 healthy younger adults produced multiple repetitions of 4 sentences containing an embedded Stroop task in 2 cognitive load conditions: congruent and incongruent. The incongruent condition, which required participants to suppress orthographic information to say the font colors in which color words were written, represented an increase in cognitive load relative to the congruent condition in which word text and font color matched. Kinematic measures of articulatory coordination variability and movement duration as well as a behavioral measure of sentence production accuracy were compared between groups and conditions and across 3 sentence segments (pre-, during-, and post-Stroop).ResultsIncreased cognitive load in the incongruent condition was associated with increased articulatory coordination variability and movement duration, compared to the congruent Stroop condition, for both age groups. Overall, the effect of increased cognitive load was greater for older adults than younger adults and was greatest in the portion of the sentence in which cognitive load was manipulated (during-Stroop), followed by the pre-Stroop segment. Sentence production accuracy was reduced for older adults in the incongruent condition.ConclusionsIncreased cognitive load involving response inhibition, selective attention, and working memory processes within a speech production task disrupted both the stability and timing with which speech was produced by both age groups. Older adults' speech motor performance may have been more affected due to age-related changes in cognitive and motoric functions that result in altered motor cognition.


2018 ◽  
Author(s):  
Naohide Yamamoto ◽  
Dagmara E. Mach ◽  
John W. Philbeck ◽  
Jennifer Van Pelt

Generally, imagining an action and physically executing it are thought to be controlled by common motor representations. However, imagined walking to a previewed target tends to be terminated more quickly than real walking to the same target, raising a question as to what representations underlie the two modes of walking. To address this question, the present study put forward a hypothesis that both explicit and implicit representations of gait are involved in imagined walking, and further proposed that the underproduction of imagined walking duration largely stems from the explicit representation due to its susceptibility to a general undershooting tendency in time production (i.e., the error of anticipation). Properties of the explicit and implicit representations were examined by manipulating their relative dominance during imagined walking through concurrent bodily motions, and also by using non-spatial tasks that extracted the temporal structure of imagined walking. Results showed that the duration of imagined walking subserved by the implicit representation was equal to that of real walking, and a time production task exhibited an equivalent underproduction bias as in imagined walking tasks that were based on the explicit representation. These findings are interpreted as evidence for the dual-representation view of imagined walking.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Asato Morita ◽  
Yasunori Morishima ◽  
David W. Rackham

Accurate time estimation is crucial for many human activities and necessitates the use of working memory, in which the dorsolateral prefrontal cortex (DLPFC) plays a critical role. We tested the hypothesis that the DLPFC is activated in participants attempting time estimations that require working memory. Specifically, we used functional near-infrared spectroscopy (fNIRS) to investigate prefrontal cortical activity in the brains of individuals performing a prospective time production task. We measured cerebral hemodynamic responses in 26 healthy right-handed university students while they marked the passage of specified time intervals (3, 6, 9, 12, or 15 s) or performed a button-pressing (control) task. The behavioral results indicated that participants’ time estimations were accurate with minimal variability. The fNIRS data showed that activity was significantly higher in the right DLPFC during the time estimation task compared to the control task. Theoretical considerations and the results of this study suggest that DLPFC activation resulting from time estimation indicates that the working memory system is in use.


2004 ◽  
Vol 65 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Frederik M. van der Veen ◽  
Maurits W. van der Molen ◽  
Eveline A. Crone ◽  
J.Richard Jennings

2018 ◽  
Vol 72 (3) ◽  
pp. 446-456 ◽  
Author(s):  
Kim Archambeau ◽  
Alice De Visscher ◽  
Marie-Pascale Noël ◽  
Wim Gevers

Arithmetic facts (AFs) are required when solving problems such as “3 × 4” and refer to calculations for which the correct answer is retrieved from memory. Currently, two important effects that modulate the performance in AFs have been highlighted: the problem size effect and the proactive interference effect. The aim of this study is to investigate possible age-related changes of the problem size effect and the proactive interference effect in AF solving. To this end, the performance of young and older adults was compared in a multiplication production task. Furthermore, an independent measure of proactive interference was assessed to further define the architecture underlying this effect in multiplication solving. The results indicate that both young and older adults were sensitive to the effects of interference and of the problem size. That is, both interference and problem size affected performance negatively: the time needed to solve a multiplication problem increases as the level of interference and the size of the problem increase. Regarding the effect of ageing, the problem size effect remains constant with age, indicating a preserved AF network in older adults. Interestingly, sensitivity to proactive interference in multiplication solving was less pronounced in older than in younger adults suggesting that part of the proactive interference has been overcome with age.


2020 ◽  
Vol 725 ◽  
pp. 134893
Author(s):  
Camila Tortello ◽  
Patricia V. Agostino ◽  
Agustín Folgueira ◽  
Marta Barbarito ◽  
Juan M. Cuiuli ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Sign in / Sign up

Export Citation Format

Share Document