Can single pulse electrical stimulation provoke responses similar to spontaneous interictal epileptiform discharges?

2014 ◽  
Vol 125 (7) ◽  
pp. 1306-1311 ◽  
Author(s):  
Dinesh Nayak ◽  
Antonio Valentín ◽  
Richard P. Selway ◽  
Gonzalo Alarcón
2018 ◽  
Vol 28 (06) ◽  
pp. 1750057 ◽  
Author(s):  
Gonzalo Alarcón ◽  
Diego Jiménez-Jiménez ◽  
Antonio Valentín ◽  
David Martín-López

Objectives: To model cortical connections in order to characterize their oscillatory behavior and role in the generation of spontaneous electroencephalogram (EEG). Methods: We studied averaged responses to single pulse electrical stimulation (SPES) from the non-epileptogenic hemisphere of five patients assessed with intracranial EEG who became seizure free after contralateral temporal lobectomy. Second-order control system equations were modified to characterize the systems generating a given response. SPES responses were modeled as responses to a unit step input. EEG power spectrum was calculated on the 20[Formula: see text]s preceding SPES. Results: 121 channels showed responses to 32 stimulation sites. A single system could model the response in 41.3% and two systems were required in 58.7%. Peaks in the frequency response of the models tended to occur within the frequency range of most activity on the spontaneous EEG. Discrepancies were noted between activity predicted by models and activity recorded in the spontaneous EEG. These discrepancies could be explained by the existence of alpha rhythm or interictal epileptiform discharges. Conclusions: Cortical interactions shown by SPES can be described as control systems which can predict cortical oscillatory behavior. The method is unique as it describes connectivity as well as dynamic interactions.


2015 ◽  
Vol 55 (2) ◽  
pp. 122-132
Author(s):  
Adetayo Adeleye ◽  
Alice W. Ho ◽  
Alberto Nettel-Aguirre ◽  
Valerie Kirk ◽  
Jeffrey Buchhalter

2021 ◽  
Vol 353 ◽  
pp. 109092
Author(s):  
Eloïse Gronlier ◽  
Estelle Vendramini ◽  
Julien Volle ◽  
Agata Wozniak-Kwasniewska ◽  
Noelia Antón Santos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Pyrzowski ◽  
Jean- Eudes Le Douget ◽  
Amal Fouad ◽  
Mariusz Siemiński ◽  
Joanna Jędrzejczak ◽  
...  

AbstractClinical diagnosis of epilepsy depends heavily on the detection of interictal epileptiform discharges (IEDs) from scalp electroencephalographic (EEG) signals, which by purely visual means is far from straightforward. Here, we introduce a simple signal analysis procedure based on scalp EEG zero-crossing patterns which can extract the spatiotemporal structure of scalp voltage fluctuations. We analyzed simultaneous scalp and intracranial EEG recordings from patients with pharmacoresistant temporal lobe epilepsy. Our data show that a large proportion of intracranial IEDs manifest only as subtle, low-amplitude waveforms below scalp EEG background and could, therefore, not be detected visually. We found that scalp zero-crossing patterns allow detection of these intracranial IEDs on a single-trial level with millisecond temporal precision and including some mesial temporal discharges that do not propagate to the neocortex. Applied to an independent dataset, our method discriminated accurately between patients with epilepsy and normal subjects, confirming its practical applicability.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650016 ◽  
Author(s):  
Loukianos Spyrou ◽  
David Martín-Lopez ◽  
Antonio Valentín ◽  
Gonzalo Alarcón ◽  
Saeid Sanei

Interictal epileptiform discharges (IEDs) are transient neural electrical activities that occur in the brain of patients with epilepsy. A problem with the inspection of IEDs from the scalp electroencephalogram (sEEG) is that for a subset of epileptic patients, there are no visually discernible IEDs on the scalp, rendering the above procedures ineffective, both for detection purposes and algorithm evaluation. On the other hand, intracranially placed electrodes yield a much higher incidence of visible IEDs as compared to concurrent scalp electrodes. In this work, we utilize concurrent scalp and intracranial EEG (iEEG) from a group of temporal lobe epilepsy (TLE) patients with low number of scalp-visible IEDs. The aim is to determine whether by considering the timing information of the IEDs from iEEG, the resulting concurrent sEEG contains enough information for the IEDs to be reliably distinguished from non-IED segments. We develop an automatic detection algorithm which is tested in a leave-subject-out fashion, where each test subject’s detection algorithm is based on the other patients’ data. The algorithm obtained a [Formula: see text] accuracy in recognizing scalp IED from non-IED segments with [Formula: see text] accuracy when trained and tested on the same subject. Also, it was able to identify nonscalp-visible IED events for most patients with a low number of false positive detections. Our results represent a proof of concept that IED information for TLE patients is contained in scalp EEG even if they are not visually identifiable and also that between subject differences in the IED topology and shape are small enough such that a generic algorithm can be used.


2009 ◽  
Vol 297 (4) ◽  
pp. G672-G680 ◽  
Author(s):  
P. Du ◽  
S. Li ◽  
G. O'Grady ◽  
L. K. Cheng ◽  
A. J. Pullan ◽  
...  

Gastric electrical stimulation (GES) involves the delivery of electrical impulses to the stomach for therapeutic purposes. New GES protocols are needed that are optimized for improved motility outcomes and energy efficiency. In this study, a biophysically based smooth muscle cell (SMC) model was modified on the basis of experimental data and employed in conjunction with experimental studies to define the effects of a large range of GES protocols on individual SMCs. For the validation studies, rat gastric SMCs were isolated and subjected to patch-clamp analysis during stimulation. Experimental results were in satisfactory agreement with simulation results. The results define the effects of a wide range of GES parameters (pulse width, amplitude, and pulse-train frequency) on isolated SMCs. The minimum pulse width required to invoke a supramechanical threshold response from SMCs (defined at −30 mV) was 65 ms (at 250-pA amplitude). The minimum amplitude required to invoke this threshold was 75 pA (at 1,000-ms pulse width). The amplitude of the invoked response beyond this threshold was proportional to the stimulation amplitude. A high-frequency train of stimuli (40 Hz; 10 ms, 150 pA) could invoke and maintain the SMC plateau phase while requiring 60% less power and accruing ∼30% less intracellular Ca2+ concentration during the plateau phase than a comparable single-pulse protocol could in a demonstrated example. Validated computational simulations are an effective strategy for efficiently identifying effective minimum-energy GES protocols, and pulse-train protocols may also help to reduce the power consumption of future GES devices.


Epilepsia ◽  
2021 ◽  
Author(s):  
Robert J. Quon ◽  
Edward J. Camp ◽  
Stephen Meisenhelter ◽  
Yinchen Song ◽  
Sarah A. Steimel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document