Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans – A randomized, 3-way, blinded, cross-over meal study

Author(s):  
Nazikussabah Zaharudin ◽  
Mikkel Tullin ◽  
Ceyda Tugba Pekmez ◽  
Jens J. Sloth ◽  
Rie R. Rasmussen ◽  
...  
2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Mary Farrell ◽  
Emily Sonestedt ◽  
Anne Raben ◽  
Juscelino Tovar ◽  
Stina Ramne ◽  
...  

AbstractIntroductionWhen compared to other primates, humans elicit a large variation in the copy number for the salivary amylase gene, AMY1. This variation can range from 2 to 17 copies. The AMY1 gene is responsible for coding for salivary amylase, an enzyme needed to catalyze the hydrolysis of starch molecules into smaller sugars. AMY1 copy number correlates with the amount and activity of salivary amylase. Few studies have investigated the effect of amylase copy number on fasting and postprandial glucose levels. The aim was first to investigate the association between AMY1 copy numbers and fasting glucose in an observational study, and secondly to investigate the difference in postprandial effect of high-starch meals in individuals with either high or low AMY1 copy numbers.Materials and methodsFor the observational study, we used data from 436 participants from the Malmö Offspring Study (MOS) cohort whom have been genotyped for AMY1. For the meal study (conducted during May 2019), we used genotype-based-recall to recruit 24 participants from the observational study of the MOS cohort: 12 with low AMY1 copy number (from the lowest 20%) and 12 with high AMY1 copy numbers (from the highest 20%). Each subject will be served a breakfast meal of white wheat bread on two separate test days: one containing 40 g and the other containing 80 g of carbohydrates (mainly starch). Blood samples will then be taken at various time points to investigate postprandial glucose and insulin responses.ResultsWhen using linear regression analyses adjusting for age and sex, no significant association between AMY1 copy number and fasting glucose was observed (p = 0.23). However, there was a difference (p = 0.05) in fasting glucose levels between the lowest (2–4 copy numbers: 5.31 mmol/L; 95% CI: 5.13–5.50) and highest (10–16 copy numbers: 5.57 mmol/L; 95% CI: 5.39–5.75) copy number groups. The results for the meal study will be obtained in June 2019 and be presented at the conference.DiscussionOur findings of higher fasting glucose among the group with more than 10 AMY1 copy numbers is the first study to find this and needs to be replicated in other populations.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mary Farrell ◽  
Stina Ramne ◽  
Phébée Gouinguenet ◽  
Louise Brunkwall ◽  
Ulrika Ericson ◽  
...  

Abstract Background Copy number (CN) variation (CNV) of the salivary amylase gene (AMY1) influences the ability to digest starch and may influence glucose homeostasis, obesity and gut microbiota composition. Hence, the aim was to examine the association of AMY1 CNV with fasting glucose, BMI, and gut microbiota composition considering habitual starch intake and to investigate the effect of AMY1 CNV on the postprandial response after two different starch doses. Methods The Malmö Offspring Study (n = 1764, 18–71 years) was used to assess interaction effects between AMY1 CNV (genotyped by digital droplet polymerase chain reaction) and starch intake (assessed by 4-day food records) on fasting glucose, BMI, and 64 gut bacteria (16S rRNA sequencing). Participants with low (≤ 4 copies, n = 9) and high (≥ 10 copies, n = 10) AMY1 CN were recruited for a crossover meal study to compare postprandial glycemic and insulinemic responses to 40 g and 80 g starch from white wheat bread. Results In the observational study, no overall associations were found between AMY1 CNV and fasting glucose, BMI, or gut microbiota composition. However, interaction effects between AMY1 CNV and habitual starch intake on fasting glucose (P = 0.03) and BMI (P = 0.05) were observed, suggesting inverse associations between AMY1 CNV and fasting glucose and BMI at high starch intake levels and positive association at low starch intake levels. No associations with the gut microbiota were observed. In the meal study, increased postprandial glucose (P = 0.02) and insulin (P = 0.05) were observed in those with high AMY1 CN after consuming 40 g starch. This difference was smaller and nonsignificant after consuming 80 g starch. Conclusions Starch intake modified the observed association between AMY1 CNV and fasting glucose and BMI. Furthermore, depending on the starch dose, a higher postprandial glucose and insulin response was observed in individuals with high AMY1 CN than in those with low AMY1 CN. Trial registration ClinicalTrials.gov, NCT03974126. Registered 4 June 2019—retrospectively registered.


2007 ◽  
Vol 177 (4S) ◽  
pp. 96-97
Author(s):  
J. Kellogg Parsons ◽  
Vicky Newman ◽  
James L. Mohler ◽  
John P. Pierce ◽  
Electra Paskett ◽  
...  

2008 ◽  
Vol 46 (09) ◽  
Author(s):  
J Wörle ◽  
T Lindenberger ◽  
M Albrecht ◽  
R Linke ◽  
JE Foley ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 144-OR
Author(s):  
LESLIE J. KLAFF ◽  
DACHUANG CAO ◽  
MARY A. DELLVA ◽  
JANET TOBIAN ◽  
JUNNOSUKE MIURA ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document