Computational design of tissue engineering scaffolds

2007 ◽  
Vol 196 (31-32) ◽  
pp. 2991-2998 ◽  
Author(s):  
Scott J. Hollister ◽  
Cheng Yu Lin
Author(s):  
Esther Reina-Romo ◽  
Ioannis Papantoniou ◽  
Veerle Bloemen ◽  
Liesbet Geris

2002 ◽  
Vol 758 ◽  
Author(s):  
Suman Das ◽  
Scott J. Hollister ◽  
Colleen Flanagan ◽  
Adebisi Adewunmi ◽  
Karlin Bark ◽  
...  

ABSTRACTAdvanced and novel fabrication methods are needed to build complex three-dimensional scaffolds that incorporate multiple functionally graded biomaterials with a porous internal architecture that will enable the simultaneous growth of multiple tissues, tissue interfaces and blood vessels. The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design methods. When fully developed, such techniques are expected to enable the fabrication of tissue engineering scaffolds endowed with functionally graded material composition and porosity exhibiting sharp or smooth gradients. As a first step towards realizing this goal, scaffolds with periodic cellular and biomimetic architectures were designed and fabricated using selective laser sintering in Nylon-6, a biocompatible polymer. Results of bio-compatibility and in vivo implantation studies conducted on these scaffolds are reported.


2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2011 ◽  
Vol 17 (21-22) ◽  
pp. 2583-2592 ◽  
Author(s):  
Jessica A. DeQuach ◽  
Shauna H. Yuan ◽  
Lawrence S.B. Goldstein ◽  
Karen L. Christman

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1269
Author(s):  
Gareth Sheppard ◽  
Karl Tassenberg ◽  
Bogdan Nenchev ◽  
Joel Strickland ◽  
Ramy Mesalam ◽  
...  

In tissue engineering, scaffolds are a key component that possess a highly elaborate pore structure. Careful characterisation of such porous structures enables the prediction of a variety of large-scale biological responses. In this work, a rapid, efficient, and accurate methodology for 2D bulk porous structure analysis is proposed. The algorithm, “GAKTpore”, creates a morphology map allowing quantification and visualisation of spatial feature variation. The software achieves 99.6% and 99.1% mean accuracy for pore diameter and shape factor identification, respectively. There are two main algorithm novelties within this work: (1) feature-dependant homogeneity map; (2) a new waviness function providing insights into the convexity/concavity of pores, important for understanding the influence on cell adhesion and proliferation. The algorithm is applied to foam structures, providing a full characterisation of a 10 mm diameter SEM micrograph (14,784 × 14,915 px) with 190,249 pores in ~9 min and has elucidated new insights into collagen scaffold formation by relating microstructural formation to the bulk formation environment. This novel porosity characterisation algorithm demonstrates its versatility, where accuracy, repeatability, and time are paramount. Thus, GAKTpore offers enormous potential to optimise and enhance scaffolds within tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document