Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments

2018 ◽  
Vol 330 ◽  
pp. 64-82 ◽  
Author(s):  
Hui-Shen Shen ◽  
Y. Xiang
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc

Nonlinear buckling and postbuckling of orthogonal carbon nanotube-reinforced composite (Orthogonal CNTRC) cylindrical shells subjected to axial compression in thermal environments surrounded by elastic foundation are presented in this paper. Two layers of shell are reinforced by carbon nanotube (CNT) in two orthogonal directions (longitudinal and circumferential directions). Based on Donnell’s shell theory with von Karman’s nonlinearity and the Galerkin method, the governing equations are established to obtain the critical buckling loads and postbuckling load-deflection curves. The large effects of CNT volume fraction, temperature change, elastic foundation and geometrical parameters of cylindrical shells on the buckling load and postbuckling behavior of Orthogonal CNTRC cylindrical shells are obtained.


Author(s):  
Jiabin Sun ◽  
Shengbo Zhu ◽  
Zhenzhen Tong ◽  
Zhenhuan Zhou ◽  
Xinsheng Xu

Axially compressed composite cylindrical shells can attain multiple bifurcation points in their post-buckling procedure because of the natural transverse deformation restraint provided by their geometry. In this paper, the post-buckling analysis of functionally graded (FG) multilayer graphene platelets reinforced composite (GPLRC) cylindrical shells under axial compression is carried out to investigate the stability of such shells. Rather than the critical buckling limit, the focus of the present study is to obtain convergence post-buckling response curves of axially compressed FG multilayer GPLRC cylindrical shells. By introducing a unified shell theory, the nonlinear large deflection governing equations for post-buckling of FG multilayer GPLRC cylindrical shells with wide range of thickness are established, which can be easily changed into three widely used shell theories. Load-shortening curves for both symmetric and asymmetric post-buckling modes are obtained by Galerkin's method. Numerical results illustrate that the present solutions agree well with the existing theoretical and experimental data. The effects of geometries and material properties on the post-buckling behaviours of FG multilayer GPLRC cylindrical shells are investigated. The differences in the three shell theories and their scopes are discussed also.


Sign in / Sign up

Export Citation Format

Share Document