Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments

2018 ◽  
Vol 135 ◽  
pp. 398-409 ◽  
Author(s):  
Hui-Shen Shen ◽  
Y. Xiang ◽  
Yin Fan
Author(s):  
Hoang Van Tung ◽  
Vu Thanh Long

An analytical investigation on the buckling and postbuckling behavior of carbon nanotube reinforced composite (CNTRC) sandwich cylindrical panels exposed to thermal environments and subjected to uniform axial compression is presented in this paper. Beside sandwich model with CNTRC face sheets in the literature, the present work suggests a sandwich model with CNTRC core layer and homogeneous face sheets. Carbon nanotubes (CNTs) are reinforced into matrix phase through uniform or functionally graded distributions. Effective properties of nanocomposite layers are determined according to extended rule of mixture. Formulations are based on the first order shear deformation theory taking into account Von Karman-Donnell nonlinearity. Approximate solutions are assumed to satisfy simply supported boundary conditions and Galerkin method is used to derive the closed-form expression of nonlinear load-deflection relation from which buckling loads and postbuckling paths are determined. Numerical examples are carried out and interesting remarks are given.


Author(s):  
Hoang Van Tung ◽  
Dao Nhu Mai ◽  
Vu Thanh Long

An analytical investigation on the nonlinear response of doubly curved panels constructed from homogeneous face sheets and carbon nanotube reinforced composite (CNTRC) core and subjected to external pressure in thermal environments is presented in this paper. Carbon nanotubes (CNTs) are reinforced into the core layer through uniform or functionally graded distributions. The properties of constituents are assumed to be temperature dependent and effective properties of CNTRC are determined using an extended rule of mixture. Governing equations are established within the framework of first order shear deformation theory taking into account geometrical imperfection, von Kármán–Donnell nonlinearity, panel-foundation interaction and elasticity of tangential edge restraints. These equations are solved using approximate analytical solutions and Galerkin method for simply supported panels. The results reveal that load carrying capacity of sandwich panels is stronger when boundary edges are more rigorously restrained and face sheets are thicker. Furthermore, elevated temperature has deteriorative and beneficial influences on the load bearing capability of sandwich panels with movable and restrained edges, respectively.


Sign in / Sign up

Export Citation Format

Share Document