Adjusted approximation spaces for the treatment of transverse shear locking in isogeometric Reissner–Mindlin shell analysis

2019 ◽  
Vol 354 ◽  
pp. 850-870
Author(s):  
G. Kikis ◽  
W. Dornisch ◽  
S. Klinkel
2019 ◽  
Vol 3 (4) ◽  
pp. 100 ◽  
Author(s):  
Di Sciuva ◽  
Sorrenti

The present work focuses on the formulation and numerical assessment of a family of C0 quadrilateral plate elements based on the refined zigzag theory (RZT). Specifically, four quadrilateral plate elements are developed and numerically tested: The classical bi-linear 4-node element (RZT4), the serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node anisoparametric constrained element (RZT4c). To assess the relative merits and drawbacks, numerical tests on bending (maximum deflection and stresses) and free vibration analysis of laminated composite and sandwich plates under different boundary conditions and transverse load distributions are performed. Convergences studies with regular and distorted meshes, transverse shear-locking effect for thin and very thin plates are carried out. It is concluded that the bi-linear 4-node element (RZT4) has performances comparable to the other elements in the range of thin plates when reduced integration is adopted but presents extra zero strain energy modes. The serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node anisoparametric constrained element (RZT4c) show remarkable performance and predictive capabilities for various problems, and transverse shear-locking is greatly relieved, at least for aspect ratio equal to 5 × 102, without using any reduced integration scheme. Moreover, RZT4c has well-conditioned element stiffness matrix, contrary to RZT4 using reduced integration strategy, and has the same computational cost of the RZT4 element.


2010 ◽  
Vol 26 (4) ◽  
pp. 431-438
Author(s):  
Cengiz Polat

ABSTRACTA locking free formulation of 4-node bilinear shell element and its application to shell structures is demonstrated. The Enhanced Assumed Strain (EAS) method based on three-field variational principle of Hu-Washizu is used in the formulation. Transverse shear locking and membrane locking are circumvented by means of enhancing the displacement-dependent strain field with extra assumed strain field. Several benchmark shell problems are analyzed.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097190
Author(s):  
Mohammed Himeur ◽  
Hamza Guenfoud ◽  
Mohamed Guenfoud

The present paper describes the formulation of a new moderately thick plate bending triangular finite element based on Mindlin–Reissner plate theory. It is called a Great Triangular Moderately Thick Plate Finite Element, or GTMTPFE. The formulation is based on the strain approach, on solution of Airy’s function and on the analytical integration in the construction of the stiffness matrix. The strengths associated with this approach consist of: • automatic verification of equilibrium conditions and kinematic compatibility conditions, • the enrichment of the degrees of the interpolation polynomials of displacements, strains and constraints (refinement p), • the consideration distortions sections related to Poisson effects, • the treatment of blocking phenomena related to transverse shear. In general, this approach results in a competitive, robust and efficient new moderately thick plate finite element. This is visible, on the one hand, through its stability against patch tests (constant twists, state of constants moments, transverse shear locking phenomenon, isotropy test). This is visible, through its good response to the patch tests to which it is subjected (constant torsions, state of constant moments, phenomenon of blocking in transverse shears, isotropy test). As has excellent convergence to the reference solution. Thus, it exhibits better performance behavior than other existing plate elements in the literature, particularly for moderately thick plates and for thin plates (L/h ratio greater than 4).


2012 ◽  
Vol 19 (3) ◽  
pp. 477-492 ◽  
Author(s):  
Pawel Woelke ◽  
Ka-Kin Chan ◽  
Raymond Daddazio ◽  
Najib Abboud

The current paper presents enhancement introduced to the elasto-viscoplastic shell formulation, which serves as a theoretical base for the finite element code EPSA (Elasto-Plastic Shell Analysis) [1–3]. The shell equations used in EPSA are modified to account for transverse shear deformation, which is important in the analysis of thick plates and shells, as well as composite laminates. Transverse shear forces calculated from transverse shear strains are introduced into a rate-dependent yield function, which is similar to Iliushin's yield surface expressed in terms of stress resultants and stress couples [12]. The hardening rule defined by Bieniek and Funaro [4], which allows for representation of the Bauschinger effect on a moment-curvature plane, was previously adopted in EPSA and is used here in the same form. Viscoplastic strain rates are calculated, taking into account the transverse shears. Only non-layered shells are considered in this work.


2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Yadong Xu ◽  
Guangsong Chen ◽  
Jinsong Tang

In this paper, a gradient stable node-based smoothed discrete shear gap method (GS-DSG) using 3-node triangular elements is presented for Reissner–Mindlin plates in elastic-static, free vibration, and buckling analyses fields. By applying the smoothed Galerkin weak form, the discretized system equations are obtained. In order to carry out the smoothing operation and numerical integration, the smoothing domain associated with each node is defined. The modified smoothed strain with gradient information is derived from the Hu–Washizu three-field variational principle, resulting in the stabilization terms in the system equations. The stabilized discrete shear gap method is also applied to avoid transverse shear-locking problem. Several numerical examples are provided to illustrate the accuracy and effectiveness. The results demonstrate that the presented method is free of shear locking and can overcome the temporal instability issues, simultaneously obtaining excellent solutions.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


1986 ◽  
Vol 14 (1) ◽  
pp. 3-32 ◽  
Author(s):  
P. Popper ◽  
C. Miller ◽  
D. L. Filkin ◽  
W. J. Schaffers

Abstract A mathematical analysis of radial tire cornering was performed to predict tire deflections and belt-edge separation strains. The model includes the effects of pure bending, transverse shear bending, lateral restraint of the carcass on the belt, and shear displacements between belt and carcass. It also provides a description of the key mechanisms that act during cornering. The inputs include belt and carcass cord properties, cord angle, pressure, rubber properties, and cornering force. Outputs include cornering deflections and interlaminar shear strains. Key relations found between tire parameters and responses were the optimum angle for minimum cornering deflections and its dependence on cord modulus, and the effect of cord angle and modulus on interlaminar shear strains.


Sign in / Sign up

Export Citation Format

Share Document