A parallel solution for high resolution histological image analysis

2012 ◽  
Vol 108 (1) ◽  
pp. 388-401 ◽  
Author(s):  
G. Bueno ◽  
R. González ◽  
O. Déniz ◽  
M. García-Rojo ◽  
J. González-García ◽  
...  
Author(s):  
D. E. Becker

An efficient, robust, and widely-applicable technique is presented for computational synthesis of high-resolution, wide-area images of a specimen from a series of overlapping partial views. This technique can also be used to combine the results of various forms of image analysis, such as segmentation, automated cell counting, deblurring, and neuron tracing, to generate representations that are equivalent to processing the large wide-area image, rather than the individual partial views. This can be a first step towards quantitation of the higher-level tissue architecture. The computational approach overcomes mechanical limitations, such as hysterisis and backlash, of microscope stages. It also automates a procedure that is currently done manually. One application is the high-resolution visualization and/or quantitation of large batches of specimens that are much wider than the field of view of the microscope.The automated montage synthesis begins by computing a concise set of landmark points for each partial view. The type of landmarks used can vary greatly depending on the images of interest. In many cases, image analysis performed on each data set can provide useful landmarks. Even when no such “natural” landmarks are available, image processing can often provide useful landmarks.


2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Katsuya Hirota ◽  
Tomoko Ariga ◽  
Masahiro Hino ◽  
Go Ichikawa ◽  
Shinsuke Kawasaki ◽  
...  

A neutron detector using a fine-grained nuclear emulsion has a sub-micron spatial resolution and thus has potential to be applied as high-resolution neutron imaging. In this paper, we present two approaches to applying the emulsion detectors for neutron imaging. One is using a track analysis to derive the reaction points for high resolution. From an image obtained with a 9 μm pitch Gd grating with cold neutrons, periodic peak with a standard deviation of 1.3 μm was observed. The other is an approach without a track analysis for high-density irradiation. An internal structure of a crystal oscillator chip, with a scale of approximately 30 μm, was able to be observed after an image analysis.


Author(s):  
Aymen Al-Saadi ◽  
Ioannis Paraskevakos ◽  
Bento Collares Gonçalves ◽  
Heather J. Lynch ◽  
Shantenu Jha ◽  
...  

1989 ◽  
Vol 281 (5) ◽  
pp. 336-341 ◽  
Author(s):  
W. Stolz ◽  
K. Scharffetter ◽  
W. Abmayr ◽  
W. K�ditz ◽  
T. Krieg

1999 ◽  
Vol 18 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Uta Jütting ◽  
Peter Gais ◽  
Karsten Rodenacker ◽  
Joachim Böhm ◽  
Susanne Koch ◽  
...  

Neuroendocrine tumours (NET) of the lung are divided in subtypes with different malignant potential. The first is the benign or low‐grade malignant tumours, well‐differentiated, called typical carcinoids (TC) and the second is the high‐grade malignant tumours, poorly differentiated of small (SCLC) or large cell type (LCLC). Between these tumour types lies the well‐differentiated carcinoma with a lower grade of malignancy (WDNEC). In clinical routine it is very important with regard to prognosis to distinguish patients with low malignant potential from those with higher ones. In this study 32 cases of SCLC, 13 of WDNEC and 14 of TC with a follow‐up time up to 7 years were collected. Sections 4 μm thick from paraffin embedded tissue were Feulgen stained. By means of high resolution image analysis 100 nuclei per case were randomly gathered to extract morphometric, densitometric and textural quantitative features. To investigate the ploidy status of the tumour the corrected DNA distribution was calculated. Stepwise linear discriminant analysis to differentiate the classes and Cox regression analysis for the survival time analysis were applied. Using chromatin textural and morphometric features in two two‐class discriminations, 11 of the 14 TC cases and 8 of the 13 WDNEC cases were correctly classified and 11/13 WDNEC cases and 28/32 SCLC cases, respectively. The WDNEC cases are more similar in chromatin structure to TC than to SCLC. For the survival analysis, only chromatin features were selected to differentiate patients with better and worse prognosis independent of staging and tumour type.


2016 ◽  
Vol 13 (1) ◽  
pp. 27-44 ◽  
Author(s):  
P. R. Lindgren ◽  
G. Grosse ◽  
K. M. Walter Anthony ◽  
F. J. Meyer

Abstract. Thermokarst lakes are important emitters of methane, a potent greenhouse gas. However, accurate estimation of methane flux from thermokarst lakes is difficult due to their remoteness and observational challenges associated with the heterogeneous nature of ebullition. We used high-resolution (9–11 cm) snow-free aerial images of an interior Alaskan thermokarst lake acquired 2 and 4 days following freeze-up in 2011 and 2012, respectively, to detect and characterize methane ebullition seeps and to estimate whole-lake ebullition. Bubbles impeded by the lake ice sheet form distinct white patches as a function of bubbling when lake ice grows downward and around them, trapping the gas in the ice. Our aerial imagery thus captured a snapshot of bubbles trapped in lake ice during the ebullition events that occurred before the image acquisition. Image analysis showed that low-flux A- and B-type seeps are associated with low brightness patches and are statistically distinct from high-flux C-type and hotspot seeps associated with high brightness patches. Mean whole-lake ebullition based on optical image analysis in combination with bubble-trap flux measurements was estimated to be 174 ± 28 and 216 ± 33 mL gas m−2 d−1 for the years 2011 and 2012, respectively. A large number of seeps demonstrated spatiotemporal stability over our 2-year study period. A strong inverse exponential relationship (R2 >  =  0.79) was found between the percent of the surface area of lake ice covered with bubble patches and distance from the active thermokarst lake margin. Even though the narrow timing of optical image acquisition is a critical factor, with respect to both atmospheric pressure changes and snow/no-snow conditions during early lake freeze-up, our study shows that optical remote sensing is a powerful tool to map ebullition seeps on lake ice, to identify their relative strength of ebullition, and to assess their spatiotemporal variability.


Sign in / Sign up

Export Citation Format

Share Document