Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic

2015 ◽  
Vol 152 ◽  
pp. 125-146 ◽  
Author(s):  
J. Kus ◽  
T. Tolmacheva ◽  
M. Dolezych ◽  
C. Gaedicke ◽  
D. Franke ◽  
...  
DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 62-68
Author(s):  
Germán Javier Tomas ◽  
Walter Vargas ◽  
Adrián Javier Acuña

The biomarker profiles are characteristic of oils. The goal of this study was to evaluate the biomarkers in oil samples using geochemical analysis. Oil samples were obtained from Austral Basin and from Golfo San Jorge Basin. Specifically, the aliphatic and aromatic fractions were analyzed by Gas Chromatography coupled to Mass Spectrometry. Biomarker ratios were calculated for isoprenoids, terpanes, steranes to correlate the organic matter precursor, deposition environment, and others to differentiate distinct crude oil sources. Based on the specific parameters, the crude of the Austral Basin appears to have been generated from organic matter type II-III (mixed), in deposition environments with moderate oxygen concentration, associated with a siliciclastic lithology and a moderate to high thermal maturity. On the contrary, the crude oils from the Golfo San Jorge Basin displayed biomarkers profiles characteristics to a type II (marine) kerogen, corresponding to an anoxic deposition environment, carbonated lithology and low thermal maturity.


2018 ◽  
Vol 59 (2) ◽  
pp. 168-185 ◽  
Author(s):  
B.L. Nikitenko ◽  
V.P. Devyatov ◽  
N.K. Lebedeva ◽  
V.A. Basov ◽  
E.A. Fursenko ◽  
...  

2012 ◽  
Vol 47 ◽  
pp. 120-131 ◽  
Author(s):  
Tongwei Zhang ◽  
Geoffrey S. Ellis ◽  
Stephen C. Ruppel ◽  
Kitty Milliken ◽  
Rongsheng Yang

Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 310 ◽  
Author(s):  
Dimitrios Rallakis ◽  
Raymond Michels ◽  
Marc Brouand ◽  
Olivier Parize ◽  
Michel Cathelineau

The Zoovch Ovoo uranium deposit is located in East Gobi Basin in Mongolia. It is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, in the lower part of the post-rift infilling of the Mesozoic East Gobi Basin. The Sainshand Formation corresponds to poorly consolidated medium-grained sandy intervals and clay layers deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60- to 80-m-thick siliciclastic reservoir inside aquifer driven systems, assimilated to roll-fronts. As assessed by vitrinite reflectance (%Rr < 0.4) and molecular geochemistry, the formation has never experienced significant thermal maturation. Detrital organic matter (type III and IV kerogens) is abundant in the Zoovch Ovoo depocenter. In this framework, uranium occurs as: (i) U-rich macerals without any distinguishable U-phase under SEM observation, containing up to 40 wt % U; (ii) U expressed as UO2 at the rims of large (several millimeters) macerals and (iii) U oxides partially to entirely replacing macerals, while preserving the inherited plant texture. Thus, uranium is accumulated gradually in the macerals through an organic carbon–uranium epigenization process, in respect to the maceral’s chemistry and permeability. Most macerals are rich in S and, to a lesser extent, in Fe. Frequently, Fe and S contents do not fit the stoichiometry of pyrite, although pyrite also occurs as small inclusions within the macerals. The organic matter appears thus as a major redox trap for uranium in this kind of geological setting.


Sign in / Sign up

Export Citation Format

Share Document