Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review

2020 ◽  
Vol 218 ◽  
pp. 103261 ◽  
Author(s):  
Zhengshuai Liu ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Yanbin Yao ◽  
Zhejun Pan ◽  
...  
2018 ◽  
Vol 5 (12) ◽  
pp. 181411 ◽  
Author(s):  
Dongming Zhang ◽  
Yapei Chu ◽  
Shujian Li ◽  
Yushun Yang ◽  
Xin Bai ◽  
...  

To better apply nuclear magnetic resonance (NMR) to evaluate the petrophysical characterization of high-rank coal, six anthracite samples from the Baijiao coal reservoir were measured by NMR. The porosity, T 2 cutoff value, permeability and pore type were analysed using the transverse relaxation time ( T 2 ) spectrum before and after centrifugation. The results show that the T 2 spectrum of water-saturated anthracite can be divided into a discontinuous and continuous trimodal distribution. According to the connectivity among pores, three T 2 spectrum peaks were identified at the relaxation times of 0.01–1.7 ms, 1.7–65 ms and greater than 65 ms, which correspond to the micropores (less than 100 nm), mesopores (100–1000 nm) and macropores (greater than 1000 nm), respectively. Based on the T 2 cutoff value, we divided the T 2 spectrum into two parts: bound fluid and free fluid. By comparing two classic permeability models, we proposed a permeability model to calculate the permeability of anthracite. This result demonstrates that NMR has great significance to the exploration of coal reservoirs and to the understanding of the development of coalbed methane.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 824-830 ◽  
Author(s):  
Richard F. Sigal

Summary The behavior of fluids in nanometer-scale pores can have a strong functional dependence on the pore size. In mature organic-shale reservoirs, the nuclear-magnetic-resonance (NMR) signal from methane decays by surface relaxation. The methane NMR spectrum provides an uncalibrated pore-size distribution for the pores that store methane. The distribution can be calibrated by calculating a pore-wall-surface area from a methane-Langmuir-adsorption isotherm. When this method was applied to samples from a reservoir in the dry-gas window, the pores containing methane had pore sizes that ranged from 1 to approximately 100 nm. Approximately 20–40% of the pore volume was in pores smaller than 10 nm, where deviation from bulk-fluid behavior can be significant. The samples came from two wells. The surface relaxivity for the sample from Well 2 was somewhat different from the relaxivity for the two samples from Well 1. Samples that adsorbed more methane had smaller pore sizes. This methodology to obtain pore-size distributions should be extendable to more-general organic-shale reservoirs.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jizhao Xu ◽  
Cheng Zhai ◽  
Lei Qin ◽  
Shangjian Wu ◽  
Yong Sun ◽  
...  

The enhancement of coalbed methane extraction by repeatedly injecting CO2 has been investigated for many decades, mostly focusing on the fracturing and flooding effect in numerous lab experiments, simulations, and field applications, whereas the effect of the accompanying heat transfer during cyclic liquid CO2 (LCO2) injection has rarely been studied. In this paper, the influence of the cyclic injection of cryogenic LCO2 with different cycle numbers and time on the coal pore variation was explored using low-field nuclear magnetic resonance to extract the T2 spectral information. The results have shown that as the cycle number increased, the adsorbed water (AW) decreased while the capillary water (CW) and bulk water (BW) values increased, and the pore volumes were magnified greatly based on the tendencies of fitted polynomial curves of Isa1 values and fitted exponential curve of Isa2 values. With increasing cycle time, the increase ratios of AW, CW, and BW were not independent but mutually influenced, and the Isa1 values approximately displayed a “rapid increase-slow increase” tendency, while Isa2 roughly showed fluctuating or “increase-decrease” tendencies. The changes in the IWS and FWS showed that the increased pore connectivity could allow more water to infiltrate into the pores at the saturation state and accelerate the removal of fluid water during the centrifugation state. The φe and φr variations indicated that longer cycle time coupled with a larger cycle number could cause damage generation and enhance the pore connectivity.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


Sign in / Sign up

Export Citation Format

Share Document