The impacts of flow velocity on permeability and porosity of coals by core flooding and nuclear magnetic resonance: Implications for coalbed methane production

2018 ◽  
Vol 171 ◽  
pp. 938-950 ◽  
Author(s):  
Zhengshuai Liu ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Zhejun Pan
2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


2020 ◽  
Vol 218 ◽  
pp. 103261 ◽  
Author(s):  
Zhengshuai Liu ◽  
Dameng Liu ◽  
Yidong Cai ◽  
Yanbin Yao ◽  
Zhejun Pan ◽  
...  

2018 ◽  
Vol 5 (12) ◽  
pp. 181411 ◽  
Author(s):  
Dongming Zhang ◽  
Yapei Chu ◽  
Shujian Li ◽  
Yushun Yang ◽  
Xin Bai ◽  
...  

To better apply nuclear magnetic resonance (NMR) to evaluate the petrophysical characterization of high-rank coal, six anthracite samples from the Baijiao coal reservoir were measured by NMR. The porosity, T 2 cutoff value, permeability and pore type were analysed using the transverse relaxation time ( T 2 ) spectrum before and after centrifugation. The results show that the T 2 spectrum of water-saturated anthracite can be divided into a discontinuous and continuous trimodal distribution. According to the connectivity among pores, three T 2 spectrum peaks were identified at the relaxation times of 0.01–1.7 ms, 1.7–65 ms and greater than 65 ms, which correspond to the micropores (less than 100 nm), mesopores (100–1000 nm) and macropores (greater than 1000 nm), respectively. Based on the T 2 cutoff value, we divided the T 2 spectrum into two parts: bound fluid and free fluid. By comparing two classic permeability models, we proposed a permeability model to calculate the permeability of anthracite. This result demonstrates that NMR has great significance to the exploration of coal reservoirs and to the understanding of the development of coalbed methane.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jizhao Xu ◽  
Cheng Zhai ◽  
Lei Qin ◽  
Shangjian Wu ◽  
Yong Sun ◽  
...  

The enhancement of coalbed methane extraction by repeatedly injecting CO2 has been investigated for many decades, mostly focusing on the fracturing and flooding effect in numerous lab experiments, simulations, and field applications, whereas the effect of the accompanying heat transfer during cyclic liquid CO2 (LCO2) injection has rarely been studied. In this paper, the influence of the cyclic injection of cryogenic LCO2 with different cycle numbers and time on the coal pore variation was explored using low-field nuclear magnetic resonance to extract the T2 spectral information. The results have shown that as the cycle number increased, the adsorbed water (AW) decreased while the capillary water (CW) and bulk water (BW) values increased, and the pore volumes were magnified greatly based on the tendencies of fitted polynomial curves of Isa1 values and fitted exponential curve of Isa2 values. With increasing cycle time, the increase ratios of AW, CW, and BW were not independent but mutually influenced, and the Isa1 values approximately displayed a “rapid increase-slow increase” tendency, while Isa2 roughly showed fluctuating or “increase-decrease” tendencies. The changes in the IWS and FWS showed that the increased pore connectivity could allow more water to infiltrate into the pores at the saturation state and accelerate the removal of fluid water during the centrifugation state. The φe and φr variations indicated that longer cycle time coupled with a larger cycle number could cause damage generation and enhance the pore connectivity.


2021 ◽  
Vol 92 (7) ◽  
pp. 071501
Author(s):  
Happiness Ijeoma Umeobi ◽  
Qi Li ◽  
Liang Xu ◽  
Yongsheng Tan ◽  
Chikezie Chimere Onyekwena

2018 ◽  
Vol 152 ◽  
pp. 1-11 ◽  
Author(s):  
Elmira Nybo ◽  
James E. Maneval ◽  
Sarah L. Codd ◽  
Marcia A. Ryder ◽  
Garth A. James ◽  
...  

Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Sign in / Sign up

Export Citation Format

Share Document