scholarly journals Data-driven experimental design and model development using Gaussian process with active learning

2021 ◽  
Vol 125 ◽  
pp. 101360
Author(s):  
Jorge Chang ◽  
Jiseob Kim ◽  
Byoung-Tak Zhang ◽  
Mark A. Pitt ◽  
Jay I. Myung
2011 ◽  
Vol 4 (3) ◽  
pp. 571-577 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


2021 ◽  
Vol 4 (3) ◽  
pp. 1-16
Author(s):  
Giulio Ortali ◽  
◽  
Nicola Demo ◽  
Gianluigi Rozza ◽  

<abstract><p>This work describes the implementation of a data-driven approach for the reduction of the complexity of parametrical partial differential equations (PDEs) employing Proper Orthogonal Decomposition (POD) and Gaussian Process Regression (GPR). This approach is applied initially to a literature case, the simulation of the Stokes problem, and in the following to a real-world industrial problem, within a shape optimization pipeline for a naval engineering problem.</p></abstract>


2018 ◽  
Author(s):  
Jukka Intosalmi ◽  
Adrian C. Scott ◽  
Michelle Hays ◽  
Nicholas Flann ◽  
Olli Yli-Harja ◽  
...  

AbstractMotivationMulticellular entities, such as mammalian tissues or microbial biofilms, typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding on how cell–cell and metabolic coupling produce functionally optimized structures is still limited.ResultsHere, we present a data-driven spatial framework to computationally investigate the development of one multicellular structure, yeast colonies. Using experimental growth data from homogeneous liquid media conditions, we develop and parameterize a dynamic cell state and growth model. We then use the resulting model in a coarse-grained spatial model, which we calibrate using experimental time-course data of colony growth. Throughout the model development process, we use state-of-the-art statistical techniques to handle the uncertainty of model structure and parameterization. Further, we validate the model predictions against independent experimental data and illustrate how metabolic coupling plays a central role in colony formation.AvailabilityExperimental data and a computational implementation to reproduce the results are available athttp://research.cs.aalto.fi/csb/software/multiscale/[email protected],[email protected]


2021 ◽  
Vol 147 (4) ◽  
pp. 04021008
Author(s):  
Yutao Pang ◽  
Xiaoyong Zhou ◽  
Wei He ◽  
Jian Zhong ◽  
Ouyang Hui

Author(s):  
Mihaela van der Schaar ◽  
Harry Hemingway

Machine learning offers an alternative to the methods for prognosis research in large and complex datasets and for delivering dynamic models of prognosis. Machine learning foregrounds the capacity to learn from large and complex data about the pathways, predictors, and trajectories of health outcomes in individuals. This reflects wider societal drives for data-driven modelling embedded and automated within powerful computers to analyse large amounts of data. Machine learning derives algorithms that can learn from data and can allow the data full freedom, for example, to follow a pragmatic approach in developing a prognostic model. Rather than choosing factors for model development in advance, machine learning allows the data to reveal which features are important for which predictions. This chapter introduces key machine learning concepts relevant to each of the four prognosis research types, explains where it may enhance prognosis research, and highlights challenges.


Sign in / Sign up

Export Citation Format

Share Document