scholarly journals Experimental study on kinematics of sea ice floes in regular waves

2014 ◽  
Vol 103 ◽  
pp. 15-30 ◽  
Author(s):  
David J. McGovern ◽  
Wei Bai
2011 ◽  
Vol 243-249 ◽  
pp. 4750-4753 ◽  
Author(s):  
Ji Wu Dong ◽  
Zhi Jun Li ◽  
Li Min Zhang ◽  
Guang Wei Li ◽  
Hong Wei Han

A structure was designed to reduce the large forces exerted by level ice on offshore structures in shallow icy waters, by breaking the large ice floes into small pieces from flexing-induced failure. A series of model tests was conducted to simulate ice loads on the structure. A concrete model of it was adopted to verify the stability of the structure under the action of ice floes, which had five different thicknesses. The results show that ice forces on the structure are low and that the stability of the structure under different sea bed is good.


1984 ◽  
Author(s):  
Young-Sooxa Kim ◽  
R. K. Moore ◽  
R. G. Onstott

2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097677
Author(s):  
Zhilin Liu ◽  
Linhe Zheng ◽  
Guosheng Li ◽  
Shouzheng Yuan ◽  
Songbai Yang

In recent years, the trimaran as a novel ship has been greatly developed. The subsequent large vertical motion needs to be studied and resolved. In this article, an experimental study for a trimaran vertical stabilization control is carried out. Three modes including the bare trimaran (the trimaran without appendages, the trimaran with fixed appendages, and the trimaran with controlled appendages) are performed through model tests in a towing tank. The model tests are performed in regular waves. The range of wave period is 2.0–4.0 s, and the speed of the carriage is 2.93 and 6.51 m/s. The results of the three modes show the fixed appendages and the actively controlled appendages are all effective for the vertical motion reduction of the trimaran. Moreover, the controlled appendages are more effective for the vertical stability performance of the trimaran.


2018 ◽  
Vol 45 (18) ◽  
pp. 9721-9730 ◽  
Author(s):  
Christopher Horvat ◽  
Eli Tziperman
Keyword(s):  
Sea Ice ◽  

2015 ◽  
Vol 15 (14) ◽  
pp. 8147-8163 ◽  
Author(s):  
M. Schäfer ◽  
E. Bierwirth ◽  
A. Ehrlich ◽  
E. Jäkel ◽  
M. Wendisch

Abstract. Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0–200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500–1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500–1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30 % in retrievals of τ and effective radius reff, respectively. With the help of Δ L, an estimate of the distance to the ice edge is given, where the retrieval uncertainties due to 3-D radiative effects are negligible.


2016 ◽  
Vol 10 (1) ◽  
pp. 227-244 ◽  
Author(s):  
H.-S. Park ◽  
A. L. Stewart

Abstract. The authors present an analytical model for wind-driven free drift of sea ice that allows for an arbitrary mixture of ice and open water. The model includes an ice–ocean boundary layer with an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and directly into the open water between the ice floes. The analytical tractability of this model allows efficient calculation of the ice velocity provided that the surface wind field is known and that the ocean geostrophic velocity is relatively weak. The model predicts that variations in the ice thickness or concentration should substantially modify the rotation of the velocity between the 10 m winds, the sea ice, and the ocean. Compared to recent observational data from the first ice-tethered profiler with a velocity sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to intensified southerlies on Arctic summer sea ice concentration, and the results are shown to compare closely with satellite observations.


Sign in / Sign up

Export Citation Format

Share Document